A Proof of the Butterfly Theorem Using the Similarity Factor of the Two Wings

Martin Celli

Abstract

We give a new proof of the butterfly theorem, based on the use of several expressions involving the similarity factor of the two wings.

The aim of this article is to give a new proof of the butterfly theorem.
Butterfly Theorem. Let M be the midpoint of a chord $P Q$ of a circle, through which two other chords $A B$ and $C D$ are drawn. If A and D are on opposite sides of $P Q$, and $A D, B C$ intersect $P Q$ at X and Y respectively, then M is also the midpoint of $X Y$.

Figure 1
Let O be the center of the circle. The points A and C belong to the same half-plane defined by $P Q$; the points B and D to the other half-plane, which we may assume containing O (see Figure 1). Several classic and recent proofs of this theorem are known ([1], [2]). The two wings $A M D$ and $C M B$ are clearly similar. Let α be the similarity factor:

$$
\alpha=\frac{A M}{C M}=\frac{D M}{B M}=\frac{A D}{C B} .
$$

We show that

$$
\begin{equation*}
\frac{\sin A X M}{\sin C Y M}=\alpha \tag{1}
\end{equation*}
$$

and deduce the butterfly theorem from this.

In triangle $A D M$,

$$
\begin{aligned}
D M^{2}-A M^{2} & =\|\overrightarrow{D O}+\overrightarrow{O M}\|^{2}-\|\overrightarrow{A O}+\overrightarrow{O M}\|^{2} \\
& =\left(O D^{2}+O M^{2}+2 \overrightarrow{D O} \cdot \overrightarrow{O M}\right)-\left(O A^{2}+O M^{2}+2 \overrightarrow{A O} \cdot \overrightarrow{O M}\right) \\
& =2(\overrightarrow{D O}-\overrightarrow{A O}) \cdot \overrightarrow{O M} \\
& =2 \overrightarrow{D A} \cdot \overrightarrow{O M} \\
& =2 A D \times O M \sin A X M,
\end{aligned}
$$

since the angle between $\overrightarrow{D A}$ and $\overrightarrow{O M}=\frac{\pi}{2}-\angle A X M$. Therefore,

$$
\sin A X M=\frac{D M^{2}-A M^{2}}{2 A D \times O M}
$$

Similarly, in triangle $C B M$,

$$
\sin C Y M=\frac{B M^{2}-C M^{2}}{2 C B \times O M}
$$

It follows that

$$
\begin{aligned}
\frac{\sin A X M}{\sin C Y M} & =\frac{D M^{2}-A M^{2}}{2 A D \times O M} \times \frac{2 C B \times O M}{B M^{2}-C M^{2}} \\
& =\frac{C B}{A D} \times \frac{D M^{2}-A M^{2}}{B M^{2}-C M^{2}} \\
& =\frac{1}{\alpha} \times \alpha^{2} \\
& =\alpha .
\end{aligned}
$$

This establishes (1). From this, the butterfly theorem follows:
$X M=A M \times \frac{\sin M A X}{\sin A X M}=\alpha C M \times \frac{\sin M C Y}{\alpha \sin C Y M}=C M \times \frac{\sin M C Y}{\sin C Y M}=Y M$.

References

[1] A. Bogomolny, Butterfly theorem. Interactive Mathematics Miscellany and Puzzles, http://www.cut-the-knot.org/pythagoras/Butterfly.shtml.
[2] C. Donolato, A proof of the butterfly theorem using Ceva's theorem, Forum Geom., 16 (2016) 185-186.

Martin Celli: Departamento de Matemáticas, Universidad Autónoma Metropolitana-Iztapalapa, Av. San Rafael Atlixco, 186. Col. Vicentina. Del. Iztapalapa. CP 09340, México, D.F.

E-mail address: cell@xanum.uam.mx

