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Two Six-Circle Theorems for Cyclic Pentagons

Grégoire Nicollier

Abstract. Miquel’s pentagram theorem is true for any pentagon. We consider
the pentagram obtained by producing the sides of a pentagon and prove two fur-
ther six-circle theorems, the first for a cyclic pentagram and the second for a
cyclic pentagon. If the pentagram is cyclic, consecutive circumcircles of the ear
edges issued from the same pentagon vertex have concyclic alternate intersec-
tions. If the pentagon is cyclic, alternate intersections of the circumcircles of the
rooted ears issued from the same pentagon vertex are concyclic (a rooted ear is
an ear extended by the neighboring sides of the pentagon). Among related re-
sults, we also show that the circumcircle of an ear producing opposite sides of a
cyclic quadrilateral and the circumcircle of the corresponding rooted ear are both
tangent to the same two circles centered at the circumcenter of the quadrilateral.

1. Introduction

Take any planar pentagon, not necessarily simple and convex, and consider the
pentagram obtained by producing the sides of the pentagon. By Miquel’s theorem,
the circumcircles of consecutive ears meet at five concyclic points besides the pen-
tagon vertices (Figure 1). We prove two further six-circle theorems, the first for a
cyclic pentagram and the second for a cyclic pentagon (Section 2). Larry Hoehn [5]
found that, for any pentagon, the circumcircles of the ear edges issued from the
same pentagon vertex have a common radical center: we show that alternate in-
tersections of such consecutive circumcircles are concyclic when the pentagram
is cyclic (Figure 2). Dao Thanh Oai [3] discovered experimentally with dynamic
geometry software that alternate intersections of the circumcircles of the rooted
ears issued from the same vertex of a cyclic pentagon are concyclic (a rooted ear is
an ear extended by the neighboring sides of the pentagon): we prove this conjec-
ture by explicit computations and show that this immediately follows from the fact
that these circumcircles have a common radical center (Figure 3). Using similar
computations, we obtain related results in Section 3. Here are two examples: the
circumcircles of Miquel’s theorem have a common radical center when the pen-
tagon is cyclic; the circumcircle of an ear producing opposite sides of a cyclic
quadrilateral and the circumcircle of the corresponding rooted ear are both tangent
to the same two circles centered at the circumcenter of the quadrilateral. We also
give a short computational proof of Dao’s theorem on six circumcenters associated
with a cyclic hexagon [2, 4, 1].

2. The six-circle theorems

Theorem 1. Consider a pentagon A1A2A3A4A5 (possibly nonconvex or self-
intersecting) and the pentagram with ear apices Ek+0.5 = Ak−1Ak ∩ Ak+1Ak+2
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Figure 1

obtained by producing the pentagon sides (index k is taken modulo 5). Let Ck be
the circumcircle of the ear edges issued from the pentagon vertex Ak: the consec-
utive circumcircles Ck and Ck+1 intersect at the ear apex Ek+0.5 and at a second
point denoted by Ik+0.5.

(1) Taken in pairs, the circumcircles Ck have concurrent radical axes.
(2) If the ear apices are concyclic, so are the points Ik+0.5 (Figure 2). Further

the circumcenter of the ear apices, the circumcenter of the points Ik+0.5,
and the radical center of the circumcircles Ck are then collinear.

Proof. The first part was proven in [5] for consecutive circumcircles and general-
ized in [6]; the radical center theorem immediately establishes the assertion for all
pairs of circumcircles. For the second part, the radical center lies outside the five
circumcircles when the ear apices are concylic and is thus the center of a circle C
orthogonal to all Ck, which are thus invariant under the reflection about C. This
reflection permutes Ek+0.5 and Ik+0.5 for all k and maps the circumcircle of the
Ek+0.5 to a circle, that of the Ik+0.5: the two circle centers and the inversion center
are collinear. �

Theorem 2. Consider a cyclic pentagon A1A2A3A4A5 (convex or not) and the
pentagram with ear apices Ek+0.5 = Ak−1Ak∩Ak+1Ak+2 obtained by producing
the pentagon sides (index k is taken modulo 5). Let Ik be the second point besides
Ak where the circumcircles of the rooted ears AkEk+1.5Ak+3 and AkEk−1.5Ak−3

issued from Ak intersect (Figure 3).

(1) The points Ik are concyclic.
(2) Taken in pairs, the circumcircles of the rooted ears have concurrent radical

axes.
(3) The circumcenters O of A1A2A3A4A5 and I of I1I2I3I4I5 and the con-

currency point J of the radical axes are collinear.
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Figure 2

Proof. Note that the existence of a radical center for the circumcircles of the rooted
ears implies the two other assertions as in Theorem 1: lying inside these five cir-
cumcircles, the radical center is the center of a circle C that has diameters as com-
mon chords with the circumcircles. The circumcircles of the rooted ears are thus
invariant under a reflection about C followed by a half-turn about the radical center.
This transformation permutes Ak and Ik for all k and maps the circumcircle of the
Ak to a circle, that of the Ik: the two circle centers and the inversion center are
collinear.

We prove here the whole theorem by explicit computations. We suppose without
loss of generality that the affixes of the pentagon vertices Ak are the unit complex
numbers ak = eiαk . (We sometimes identify points with their affixes for simplic-
ity!) Simple angle chasing shows [4] that the apex angle of the ear AkEk+0.5Ak+1

and the rooted ear Ak−1Ek+0.5Ak+2 is

π +
αk−1 + αk − αk+1 − αk+2

2
. (1)

Let the circumcenter Ck+0.5 of the rooted ear Ak−1Ek+0.5Ak+2 have the affix
ck+0.5: by the central angle theorem and (1), one has

ck+0.5 − ak−1 = (ck+0.5 − ak+2)ak−1ak ak+1ak+2

and therefore

ck+0.5 =
ak−1akak+2 − ak−1ak+1ak+2

ak−1ak − ak+1ak+2

= ei(αk−1+αk+2)/2 sin
αk − αk+1

2
csc

αk−1 + αk − αk+1 − αk+2

2
(2)
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by using

eiϕ − eiψ = 2iei(ϕ+ψ)/2 sin
ϕ− ψ

2
. (3)

The midpoint M of Ak−1Ak+2 has the affix

ei(αk−1+αk+2)/2 cos
αk−1 − αk+2

2

and

MAk−1 =

∣
∣
∣
∣sin

αk−1 − αk+2

2

∣
∣
∣
∣ .

Being the hypotenuse of Ck+0.5MAk−1, the circumradius rk+0.5 of the rooted ear
Ak−1Ek+0.5Ak+2 is thus

rk+0.5 =

∣
∣
∣
∣sin

αk−1 − αk+2

2
csc

αk−1 + αk − αk+1 − αk+2

2

∣
∣
∣
∣ (4)

by the Pythagorean theorem (after simplification).
The circumcircles centered at Ck+1.5 and Ck−1.5 intersect at Ak and

Ik =
(akak+1−akak+2−ak+1ak+2)a

2
k+3−(akak−1−akak−2−ak−1ak−2)a

2
k−3

(akak+1+a
2
k+2−ak+1ak+2)ak+3−(akak−1+a

2
k−2−ak−1ak−2)ak−3

. (5)

We found (5) with Mathematica (after simplification) as the second solution of the
system formed by the Cartesian equations of one circumcircle – given by (2) and
(4) – and of the radical axis of the two circumcircles, knowing the first solution ak.

The five intersection points Ik lie on a circle centered at

I =

∑5
k=1 e

iαk sin(αk+3 − αk+2)
∑5

k=1 sin(αk − αk+2)
(6)

and the lines AkIk concur at

J =

∑5
k=1 e

iαk sin(αk+3 − αk+2)
∑5

k=1 [sin(αk − αk+2)− sin(αk − αk+1)]
. (7)

The line IJ contains thus the circumcenter O = 0 of the cyclic pentagon.
We found the results (6) and (7) again with Mathematica: I by computing the

intersection of the perpendicular bisectors of I1I2 and I2I3 given by their Cartesian
equations and noticing that the formula for I is shift-invariant; J by solving the
system of the Cartesian equations of the lines A1I1 and OI and noticing that the
formula for J is shift-invariant.

It remains to show that the radical axis of two circumcircles of consecutive
rooted ears contains J . This follows from the radical center theorem: for example
the radical center of the first, second, and fourth circumcircles is J as two of the
radical axes are A3I3 and A1I1. �
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Figure 3

3. Related results

Along the same lines as in the proof of Theorem 2 one shows that the circum-
center of the ear AkEk+0.5Ak+1 is

C ′
k+0.5 =

ak−1akak+1 − akak+1ak+2

ak−1ak − ak+1ak+2

= ei(αk+αk+1)/2 sin
αk−1 − αk+2

2
csc

αk−1 + αk − αk+1 − αk+2

2
(8)

and its circumradius

r′k+0.5 =

∣
∣
∣
∣sin

αk − αk+1

2
csc

αk−1 + αk − αk+1 − αk+2

2

∣
∣
∣
∣ . (9)

Formulæ (2), (4), (8), and (9) show (Figure 4) that the circumcircles of the ear and
the rooted ear with apex Ek+0.5 are both tangent to the circles about O of radius

∣
∣
∣
∣
∣

sin
αk−1−αk+2

2 ± sin
αk−αk+1

2

sin
αk−1+αk−αk+1−αk+2

2

∣
∣
∣
∣
∣
.

This proves the following theorem.

Theorem 3. The circumcircle of an ear producing opposite sides of a cyclic quadri-
lateral and the circumcircle of the corresponding rooted ear are both tangent to the
same two circles centered at the circumcenter of the quadrilateral (Figure 4).
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The circumcircles centered at C ′
k+0.5 and C ′

k−0.5 intersect at Ak and

I ′k =
ak(ak+1+ak+2)ak+3ak+4−akak+1ak+2(ak+3+ak+4)+a

2
k+1ak+2ak+4−ak+1ak+3a

2
k+4

(ak+ak+2−ak+4)ak+3ak+4−(ak−ak+1+ak+3)ak+1ak+2
.

Miquel’s circle of a pentagon inscribed in the unit circle is centered at

I ′ =
∑5

k=1 e
iαk sin(αk−1 − αk+1)

∑5
k=1 [sin(αk − αk+2) + sin(αk + αk+1 − αk+2 − αk+3)]

and the radical axes of all pairs of ear circumcircles concur at

J ′ =
∑5

k=1 e
iαk sin(αk−1 − αk+1)

∑5
k=1 sin(αk + αk+1 − αk+2 − αk+3)

.

The points O, I ′, and J ′ are thus collinear. The following theorem is proven.

Theorem 4. If a pentagram is obtained by producing the sides of a cyclic pentagon,
the circumcircles of the ears have a common radical center.

If a hexagon A1A2A3A4A5A6 is inscribed in the unit circle, the ears of the
resulting hexagram have circumcenters C ′

k+0.5 given by (8) (k is taken modulo 6)
and the three lines C ′

k+0.5C
′
k+3.5 through opposite circumcenters concur at the

point
∑6

k=1 e
iαk sin(αk+1 + αk+2 − αk+4 − αk+5)

∑6
k=1 [sin(αk − αk+2)− sin(αk + αk+1 − αk+2 − αk+3)]

.

(Note that eiαk and eiαk+3 have opposite coefficients.) This is a direct proof of
another experimental discovery of Dao [2, 4, 1].

As partially noted elsewhere [7], the following conjecture seems experimentally
correct, but a formal proof is still missing (the implication (3) ⇒ (2) follows as in
Theorem 1).

Conjecture. The following properties of a cyclic hexagon A1A2A3A4A5A6 and
its hexagram (obtained by producing the sides of the hexagon) are equivalent.
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(1) The main diagonals AkAk+3 concur.
(2) The alternate intersections of the circumcircles of consecutive ears are con-

cyclic.
(3) The radical axes of all pairs of ear circumcircles concur.

Theorem 3 (Figure 4) has a kind of converse.

Theorem 5. In Figure 5, the center O of the inner and outer circles is equidistant
from A and B for all lines through E.

Notice the particular collinearities when A and B are both on the inner or on the
outer circle.

Proof. Without loss of generality, the inner circle is the unit circle, the circle CA of
radius r is centered at (1 + r)eiϕ and the circle CB of radius 1 + r at reiψ. The
desired intersection of CA and CB is

E = (1 + r)eiϕ + reiψ,

clearly on both circles. Point A of CA can be written as

A = (1 + r)eiϕ + reiα.

Point B of CB is then

B = reiψ + (1 + r)ei(α+ψ−ϕ)

as
−→
EA, parallel to eiα − eiψ, and

−−→
EB, parallel to ei(α+ψ−ϕ) − eiϕ, are both per-

pendicular to ei(α+ψ)/2 by (3). The segments OA and OB are congruent as they
are diagonals of parallelograms with sides r and 1 + r enclosing the angle |ϕ− α|
modulo π (or simply as eiαA = e−iψB). �
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