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New Interpolation Inequalities to Euler’s R ≥ 2r

Dorin Andrica and Dan Ştefan Marinescu

Abstract. The purpose of this paper is to obtain some interpolation inequalities
to the well-known Euler’s inequalityR ≥ 2r in terms of new geometric ele-
ments given by the radiiRA, RB , RC of the tangent circles at the vertices to the
circumcircle of a triangle and to the opposite sides. The main results are given
in Theorems 4-8.

1. Introduction

At the first 2015 Romanian IMO Team Selection Test the first author of this
paper has proposed the following problem: LetRA be the radius of the tangent
circle atA to the circumcircle of triangleABC and to the sideBC. Similarly,
define the radiiRB andRC . The following inequality holds

1

RA

+
1

RB

+
1

RC

≤ 2

r
,

wherer is the inradius of triangleABC.
In this short paper we discuss some proofs to the above inequality and we com-

plete it to the left hand-side in order to get a new interpolation for the well-known
Euler’s inequalityR ≥ 2r, whereR is the circumradius of triangleABC. Also, we
give other interpolation inequalities to the Euler’s inequality in terms of the radii
RA, RB, RC . For other interpolation and improvements inequalities to the Euler’s
inequality we refer to the excellent monograph [2].

2. Some auxiliary results

As usual, we denote bya, b, c the lengths of the sides opposite to the vertices
A, B, C, respectively, and byK[ABC] the area of triangleABC. We need the
following helpful results.

Lemma 1. In triangle ABC denote by ha, hb, hc the lengths of the altitudes from
the vertices A, B, C, respectively. The relation

1

r
=

1

ha
+

1

hb
+

1

hc
holds.

Proof. Just use the formula for the area of a triangle. �
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Lemma 2. If RA is the radius of the interior (exterior) tangent circle at A to the
circum- circle of triangle ABC and to the side BC, then

r

RA

=
a

s
cos2

B − C

2
,

where s denotes the semiperimeter of triangle ABC.

Proof 1. If B = C, then clearly we haveRA = h

2 . Using the relationsK[ABC] =

sr = aha

2 , the conclusion follows.
WhenB 6= C, let us suppose thatB > C. ConsiderT the intersection point of

the common tangent line atA to the two circles with the lineBC (see Figure 1).
In triangleTAB, we haveT̂ = B − C and from the Law of Sines we obtain

c

sin(B − C)
=

TA

sinB
=⇒ TA =

bc

2Rsin(B − C)
.

B
C

A

O

T

OA

A
′′

A
′

I

Figure 1

Becausetan B−C

2 = RA

TA
, it follows that

RA =
bc

2Rsin(B − C)
·
sin B−C

2

cos B−C

2

=
bc

2R cos2 B−c

2

.

Therefore,

r

RA

=
r

bc
cot 4R cos2

B − C

2
=

ar

4RK
cos2

B − c

2
=

a

s
cos2

B − C

2
,

whereK = K[ABC], and the proof is complete. �
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Proof 2. Let γA be the circle tangent atA to the circumcircle of triangleABC and
tangent atT to the lineBC. Assume thatR = 1, and consider the inversion of pole
A and unit power. In what follows,X ′ will denote the image of the pointX 6= A
by this inversion.

Under this inversion, the lineBC is transformed into a circleAB′C ′ centered
at some pointΩ. The circleABC is transformed into the lineB′C ′, andγA is
transformed into a lineℓ throughT ′ and parallel toB′C ′.

LetD be the orthogonal projection ofA on the lineBC. ThenAD = 1
AD

= 1
ha

,
whereha is the length of the altitude from the vertexA in the triangleABC, and
ΩT ′ = ΩA = 1

2ha
.

Next, letA1 be the antipode ofA in circleγA, soA′

1 is the orthogonal projection
of A on lineℓ, andAA′

1 =
1

AA′

1

= 1
2RA

.
Finally, letO denote the circumcenter of the triangleABC and notice the angles

OAD, ΩAA′

1 are both congruent to the absolute value of the difference of the
internal angles of triangleABC atB andC, to obtain

cos(B − C) =
AA′

1 − ΩT ′

ΩA
=

1
2RA

− 1
2ha

1
2RA

=
ha
RA

− 1 =
2K

aRA

− 1,

whereK = K[ABC] and the desired formula follows after standard transforma-
tions. �

Lemma 3. In every triangle ABC the following inequality holds

cos2
B − C

2
≥ 2r

R
.

We have equality if and only if 2a = b+ c.

Proof 1. We have

cos
B − C

2
= cos

B

2
cos

C

2
+ sin

B

2
sin

C

2

= cos
B

2
cos

C

2
− sin

B

2
sin

C

2
+ 2 sin

B

2
sin

C

2

= cos
B + C

2
+ 2 sin

B

2
sin

C

2

= sin
A

2
+ 2 sin

B

2
sin

C

2
.

Therefore,

cos
B − C

2
≥ 2

√

2 sin
A

2
sin

B

2
sin

C

2
= 2

√

2 · r

4R
=

√

2r

R
,

and the conclusion follows. The equality holds if and only ifsin A

2 = 2 sin B

2 sin C

2 ,
that isa2 = 4(s− a)2, hence2a = b+ c. �
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Proof 2. Let I be the incenter of triangleABC, and considerA′ the intersection
point of the rayAI with the circumcircle of triangleABC. We have

A′A2 = (A′I +AI)2 ≥ 4A′I ·AI = 8Rr,

where the last equality is obtained from the power ofI with respect to the cir-
cumcircle of triangleABC. Clearly, the equality holds if and only ifA′I = AI.
But

AA′ = 2R sin

(

B +
A

2

)

= 2R cos
B − C

2
,

hence the desired inequality follows. As we already mentioned, the equality holds
if and only ifA′I = AI, that isAA′ = 2IA′ = 2BA′, so

cos
B − C

2
= 2 sin

A

2
.

We obtain

sin
A

2
= 2 sin

B

2
sin

C

2
,

therefore2a = b+ c. �

3. The main results

The first interpolation result is directly connected to the original problem men-
tioned in the introduction and it is contained in the following theorem.

Theorem 4. With the above notations the following inequalities hold

4

R
≤ 1

RA

+
1

RB

+
1

RC

≤ 2

r
. (1)

We have equality if and only if the triangle ABC is equilateral.

Proof. From Lemma 2 we haver
RA

≤ a

s
, with equality if and only ifB = C.

Similarly, r

RB
≤ b

s
with equality whenC = A, and r

RC
≤ c

s
with equality when

A = B. Summing up these inequalities it follows the right hand-side inequality,
with equality if and only ifA = B = C, that is the triangle is equilateral.

From Lemma 3 and Lemma 2 we haver
RA

≥ a

s
· 2r
R

, with equality if and only if
2a = b+ c, and two analogous inequalities for the radiiRB andRC . Summing up
these inequalities we obtain

1

RA

+
1

RB

+
1

RC

≥ 2

R
· a+ b+ c

s
=

4

R
,

and we are done. �

Remark. (1) It is possible to give a direct geometric argument for the right hand-
side inequality in (1). ConsiderOA to be the center of the tangent circle atA to the
circumcircle of triangleABC and to the sideBC, andA′′ the tangency point of
this circle with the lineBC (see Figure 1). Using the triangle inequality in triangle
AOAA

′′ we haveha ≤ AA′′leAOA+OAA
′′ = 2RA, hence we obtain 1

2RA
≤ 1

ha
,

and other two similar inequalities forRB andRC . Summing up these inequalities
the conclusion follows from Lemma 1.
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Theorem 5. With the above notations the following inequalities hold

2r

R
≤ K[ABC]

3
√
abcRARBRC

≤ 1. (2)

We have equality if and only if the triangle ABC is equilateral.

Proof. Multiplying the inequalities obtained from Lemma 2, we obtain

r3

RARBRC

≤ abc

s3
,

hence
K[ABC]

3
√
abcRARBRC

≤ 1.

On the other hand, multiplying the inequalities obtained from Lemma 2 and using
Lemma 3, it follows that

abc

s3
· 8r

3

R3
≤ r3

RARBRC

.

That is
2r

R
≤ K[ABC]

3
√
abcRARBRC

,

and we complete the left hand-side of (2). Clearly, the equality holds if and only if
the triangleABC is equilateral. �

From the relation r

RA
= a

s
· cos2 B−C

2 proved in Lemma 2, we obtain

RA =
K

a cos2 B−C

2

.

In the second proof of Lemma 3 we have shown thatAA′ = 2R sin
(

B + A

2

)

=

2R cos B−C

2 , hencecos B−C

2 = AA′

2R . It is clear that the pointA′′ is the feet of the
bisector of the angleA of triangleABC. Denote byℓa the length of bisector of
angleA of triangleABC, i.e. the length of the segment[AA′′]. TrianglesAA′′OA

andAA′O are similar, therefore we obtain

RA

R
=

ℓa
AA′

=
ℓ2a

ℓa ·AA′
.

From the Law of Sines in triangleACA′′, it follows that

ℓa
sinC

=
b

sin
(

C + A

2

) .

But, clearly we have

sin

(

C +
A

2

)

= sin

(

B +
A

2

)

= cos
B − C

2
,

henceℓa ·AA′ = 2Rb sinC. We obtain

RA =
ℓ2a

2b sinC
=

ℓ2a
2ha

=
a · ℓ2a
4K

, (3)
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whereK = K[ABC] is the area of triangleABC.

Theorem 6. With the above notations the following inequalities hold

9

2
r ≤ RA +RB +RC ≤ 9

4
R. (4)

We have equality if and only if the triangle ABC is equilateral.

Proof. The left hand-side inequality can be proved using the inequality

RA =
K

a cos2 B−C

2

=
sr

a cos2 B−C

2

≥ sr

a
,

where the equality holds if and only ifB = C, and other two similar inequalities
for RB andRC . We obtain

RA +RB +RC ≥ rs

(

1

a
+

1

b
+

1

c

)

=
r

2
(a+ b+ c)

(

1

a
+

1

b
+

1

c

)

≥ 9

2
r,

with equality if and only ifa = b = c.
From (3) and from the well-known formulaℓ2a = 4bc

(b+c)2
s(s−a), the right hand-

side inequality is equivalent to
∑

cyclic

4abc

4K
· s(s− a)

(b+ c)2
≤ 9

4
R,

hence X
∑

cyclic

4RK

K
· s(s− a)

(b+ c)2
≤ 9

4
R,

that is
∑

cyclic

s(s− a)

(b+ c)2
≤ 9

16
. (5)

The inequality (5) is equivalent to
∑

cyclic

1− a

s
(

b

s
+ c

s

)2 ≤ 9

16
.

Let a

s
= 2x, b

s
= 2y, c

s
= 2z, wherex, y, z > 0 andx+ y+ z = 1. The inequality

(5) os equivalent to
∑

cyclic

1− 2x

(y + z)2
≤ 9

4
,

for everyx, y, z > 0 with x+ y + z = 1. Hence, it is reduced to
∑

cyclic

1− 2x

(1− x)2
≤ 9

4
,

for everyx, y, z > 0 with x+ y + z = 1.
The functionf : (0, 1) → R defined byf(t) = 1−2t

(1−t)2
has second derivative

f ′′(t) =
−4t− 2

(1− t)4
< 0.
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That is, it is concave on the interval(0, 1). From Jensen’s inequality it follows that

f(x) + f(y) + f(z) ≤ 3f

(

x+ y + z

3

)

= 3f

(

1

3

)

=
9

4
, (6)

and the result is completely proved. �

The functionf in the proof of Theorem 6 satisfiesf ′′ < −2 on the interval
(0, 1). Therefore, using the result of [1], the functiong : (0, 1) → R defined by
g(t) = f(t) + t2 is concave on(0, 1). Applying the Jensen’s inequality forg, we
get the following inequality forf :

f(x) + f(y) + f(z) ≤ 3f

(

x+ y + z

3

)

− 1

3

(

(x− y)2 + (y − z)2 + (z − x)2
)

.

(7)
Consideringx = a

2s , y = b

2s , z = c

2s , the inequality (7) is equivalent to
∑

cyclic

4s(s− a)

(b+ c)2
≤ 9

4
− 1

12s2
(

(a− b)2 + (b− c)2 + (c− a)2
)

,

that is
∑

cyclic

4RK

K
· 4s(s− a)

(b+ c)2
≤ 9

4
R− R

12s2
(

(a− b)2 + (b− c)2 + (c− a)2
)

,

and we obtain the following refinement of right-hand side inequality in Theorem
6:

Theorem 7. With the above notations the following inequality holds

RA +RB +RC ≤ 9

4
R− R

12s2
(

(a− b)2 + (b− c)2 + (c− a)2
)

, (8)

with equality if and only if the triangle ABC is equilateral.

Remark. (2) The radiusRA can be expressed in terms of the exradiusra of the
triangleABC as follows:

RA =
ℓ2a
2ha

=
4bc

(b+ c)2
· s(s− a)

4K/a
=

abcs

ra(b+ c)2
,

and similar formulas forRB andRC . We obtain the following formula connecting
all the radiiRA, RB, RC , R, r:

1√
RAra

+
1√
RBrb

+
1√
RCrc

=
2√
Rr

. (9)

Using the Cauchy-Schwarz inequality and formula (9) we can write

4

Rr
=

(

2√
Rr

)2

=

(

1√
RAra

+
1√
RBrb

+
1√
RCrc

)2

≤
(

1

RA

+
1

RB

+
1

RC

)(

1

ra
+

1

rb
+

1

rc

)

=

(

1

RA

+
1

RB

+
1

RC

)

1

r
,
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where we have used the well-known formula1
ra

+ 1
rb

+ 1
rc

= 1
r
. Therefore, we

have obtained a new proof to the left-hand side inequality in Theorem 4.

The last result contains two weighted interpolation results.

Theorem 8. With the above notations the following inequalities hold:

6r ≤ a

a+ b+ c
RA +

b

a+ b+ c
RB +

c

a+ b+ c
RC ≤ 3R; (10)

s

2R
≤ RA

a
+

RB

b
+

RC

c
≤ s

4r
. (11)

We have equality if and only if the triangle ABC is equilateral.

Proof. From Lemma 2 we have aaRA = rs

a cos2 B−C

2

, and using the inequality in

Lemma 3, it follows thatrs ≤ aRA ≤ sR

2 , and two similar inequalities forRB and
RC . Summing up these inequalities we get (10).

For the right-hand side inequality in (11), fromRA

a
= ℓa

4s , using the inequality
ℓ2a ≤ s(s− a), we obtain

RA

a
+

RB

b
+

RC

c
≤

∑

cyclic

s(s− a)

4s
=

s

4r
.

For the left-hand side inequality in (11), we useRA = rs

a cos2 B−C

2

≥ rs

a
, and we

obtainRA

a
≥ rs

a2
, and two similar inequalities forRB andRC . Then

RA

a
+

RB

b
+

RC

c
≥ rs

(

1

a2
+

1

b2
+

1

c2

)

≥ rs

(

1

ab
+

1

bc
+

1

ca

)

= rs · 2s

abc
= rs · 2s

4Rrs
=

s

2R
,

and we are done. �
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