About a Strengthened Version of the Erdős-Mordell Inequality

Dan Ștefan Marinescu and Mihai Monea

Abstract. In this paper, we use barycentric coordinates to prove the strengthened version of the Erdős-Mordell inequality, proposed by Dao, Nguyen and Pham in [3].

One of the most beautiful results in geometry is represented by the Erdős-Mordell ([4]) inequality that for any point P inside a triangle ABC,

$$PA + PB + PC \geq 2d(P, AB) + 2d(P, BC) + 2d(P, CA),$$

where $d(P, AB)$ denotes the distance from the point P to the line AB. There are a number of references on this result; see, for example, [1, 5]. Recently, Dao, Nguyen and Pham [3] improved the Erdős-Mordell inequality by replacing the lengths PA, PB, PC by the distances from P to the tangents to the circumcircle at A, B, C respectively.

The aim of this paper is to prove a further strengthened version of the theorem of Dao-Nguyen-Pham. We use barycentric coordinates to obtain new inequalities (Corollaries 4, 5), and the inequality of Dao-Nguyen-Pham in Corollary 6. Finally, we complete with an interesting application (Corollary 7).

In this paper, $X \in [Y, Z]$ means that X, Y, Z are collinear, and X is an interior or a boundary point of the segment YZ.

We start with the following lemma.

Lemma 1. Let A, B, C be points on a line ℓ and $B \in [A, C]$ and $k := \frac{AB}{AC}$ be the ratio of directed lengths. Then

$$d(B, \ell) = (1 - k)d(A, \ell) + kd(C, \ell).$$

Proof. Denote by U, V, W the orthogonal projections of the points A, B, C respectively onto the line ℓ. Let $T \in [C, W]$ such that $AT \perp CW$ and $AT \cap BV = \{S\}$ (see Figure 1).

Then $AUVS$ and $SVWT$ are rectangles and $AU = SV = TW$. On the other side, $\Delta ASB \sim \Delta ATC$. Then $\frac{BS}{CT} = \frac{AB}{AC} = k$; so $BS = k \cdot CT$. Furthermore,

$$(1 - k)d(A, \ell) + kd(C, \ell) = (1 - k)AU + kCW
= (1 - k)SV + kSV + kCT
= SV + BS = BV = d(B, \ell).$$
We recall that for any point P inside or the sides of triangle ABC, there are $x, y, z \in [0, 1]$ with $x + y + z = 1$ such that
\[x\overrightarrow{PA} + y\overrightarrow{PB} + z\overrightarrow{PC} = 0. \]
These numbers are unique and are called the \textit{barycentric coordinates of P with reference to triangle ABC}. Moreover, we have
\[x = \frac{[PBC]}{[ABC]}, \quad y = \frac{[PCA]}{[ABC]}, \quad z = \frac{[PAB]}{[ABC]}, \]
where $[XYZ]$ denotes the (oriented) area of triangle XYZ.

\textbf{Lemma 2.} Let ABC be a triangle with vertices on the same side of a line ℓ, and P a point inside or on the sides of the triangle. If x, y, z are the barycentric coordinates of P with reference to ABC, then
\[d(P, \ell) = xd(A, \ell) + yd(B, \ell) + zd(C, \ell). \]

\textbf{Proof.} Let $AP \cap BC = \{D\}$ so that $x = \frac{[PBC]}{[ABC]} = \frac{PD}{AD}$. From Lemma 1,
\[d(P, \ell) = (1 - x)d(D, \ell) + xd(A, \ell). \]
Proposition 3. The following assertions are equivalent:

(a) \(\gamma \in A \to \triangle \alpha \) inequality:

and analogous results for the lines

On the other hand, \(y = \frac{[PCA]}{[ABC]} \) and \(z = \frac{[PAB]}{[ABC]} \), so that \(\frac{y}{z} = \frac{[PCA]}{[PAB]} = \frac{CD}{BD} \), and

\[
\frac{CD}{CB} = \frac{y}{y+z}. \text{ From Lemma 1, }
\]

\[
d(D, \ell) = \left(1 - \frac{y}{y+z}\right)d(C, \ell) + \frac{y}{y+z}d(B, \ell).
\]

Since \(x + y + z = 1 \), this is equivalent to

\[
(1-x)d(D, \ell) = (y+z)d(D, \ell) = zd(C, \ell) + yd(B, \ell).
\]

Together with (1), this gives

\[
d(P, \ell) = xd(A, \ell) + yd(B, \ell) + yd(B, \ell) + zd(C, \ell).
\]

\[\square\]

Consider triangle \(ABC \) with \(A' \in [B, C], \ B' \in [A, C], \) and \(C' \in [A, B] \). Let \(\alpha, \beta, \gamma \in \mathbb{R} \), and \(P \) be a point in the plane of the triangle. We investigate the inequality:

\[
\alpha^2 d(P, BC) + \beta^2 d(P, AC) + \gamma^2 d(P, AB) \\
\geq 2\beta\gamma d(P, B'C') + 2\alpha\gamma d(P, A'C') + 2\alpha\beta d(P, A'B'). \tag{2}
\]

Proposition 3. The following assertions are equivalent:

(a) For any point \(P \) inside or on the sides of triangle \(A'B'C' \), the inequality (2) holds.

(b) For any point \(P \in \{A', B', C'\} \), the inequality (2) holds, i.e., for \(\alpha, \beta, \gamma \in \mathbb{R} \),

\[
\beta^2 d(A', AC) + \gamma^2 d(A', AB) \geq 2\beta\gamma d(A', B'C'),
\]

\[
\alpha^2 d(B', BC) + \gamma^2 d(B', AB) \geq 2\alpha\gamma d(B', A'C'),
\]

\[
\alpha^2 d(C', BC) + \beta^2 d(C', AC) \geq 2\alpha\beta d(C', A'B').
\]

Proof. (a) \(\Rightarrow \) (b): clear.

(b) \(\Rightarrow \) (a). Let \(x, y, z \) be the barycentric coordinates of the point \(P \) with reference to triangle \(A'B'C' \). By Lemma 2, we have

\[
d(P, BC) = xd(A', BC) + yd(B', BC) + zd(C', BC) \\
= yd(B', BC) + zd(C', BC),
\]

and analogous results for the lines \(CA, AB \) replacing \(BC \). Then

\[
\alpha^2 d(P, BC) + \beta^2 d(P, AC) + \gamma^2 d(P, AB) \\
= \alpha^2(yd(B', BC) + zd(C', BC)) + \beta^2(xd(A', AC) + zd(C', AC)) \\
+ \gamma^2(xd(A', AB) + yd(B', AB)) \\
= x(\beta^2 d(A', AC) + \gamma^2 d(A', AB)) + y(\alpha^2 d(B', BC) + \gamma^2 d(B', AB)) \\
+ z(\alpha^2 d(C', BC) + \beta^2 d(C', AC)) \\
\geq x \cdot 2\beta\gamma d(A', B'C') + y \cdot 2\alpha\gamma d(B', A'C') + z \cdot 2\alpha\beta d(C', A'B'). \tag{3}
\]
Since
\[d(P, B'C') = xd(A', B'C') + yd(B', B'C') + zd(C', B'C') = xd(A', B'C'), \]
and similarly \[d(P, C'A') = yd(B', A'C'), \]
\[d(P, A'B') = zd(C', A'B'), \]
the last term of (3) is equal to
\[2\beta\gamma d(P, B'C') + 2\alpha\gamma d(P, A'C') + 2\alpha\beta d(P, A'B'). \]
This completes the proof of (b) \(\Rightarrow\) (a). \(\square\)

Corollary 4. Let the incircle of triangle \(ABC\) touch the sides \(BC, CA, AB\) at \(A', \ B', \ C'\) respectively. The inequality (2) holds for any point \(P\) inside or on the sides of triangle \(A'B'C'\).

![Figure 3](image-url)

Proof. By using Proposition 3, it enough to prove the inequality (3) only for \(P \in \{A', \ B', \ C'\}\). We suppose \(P = A'\). Denote by \(A'', \ B'', \ C''\) the orthogonal projections of the point \(A'\) onto the lines \(B'C', \ AC, \ AB\) respectively. Let \(r\) be the radius of the incircle of the triangle \(ABC\). Then
\[A'C'' = A'C' \sin C''C'A' = A'C' \sin A'B'C' = 2r \sin^2 A'B'C'. \]
Similarly, \(A'B'' = 2r \sin^2 A'C'B'\). Now we have
\[2\beta\gamma A'A'' = \beta\gamma A'C'' \sin A'C'B' + \beta\gamma A'B' \sin A'B'C' \]
\[= 2\beta\gamma r \sin A'B'C' \sin A'C'B' + 2\beta\gamma r \sin A'B'C' \sin A'C'B' \]
\[= 4\beta\gamma r \sin A'B'C' \sin A'C'B' \]
\[\leq 2\gamma^2 r \sin^2 A'B'C' + 2\beta^2 r \sin^2 A'C'B' \]
\[= \gamma^2 A'C'' + \beta^2 A'B''. \]

Also,
\[\gamma^2 d(A', AB) + \beta^2 d(A', AC) \geq 2\beta\gamma d(A', B'C'), \]
and the proof is complete. \(\square\)
Corollary 5. Let the incircle of triangle ABC touch the sides BC, CA, AB at A', B', C' respectively. For any point P inside or on the sides of triangle $A'B'C'$,

$$d(P, BC) + d(P, AC) + d(P, AB) \geq 2d(P, B'C') + 2d(P, A'C') + 2d(P, A'B').$$

Proof. We apply Corollary 4 for $\alpha = \beta = \gamma = 1$. \qed

Now, the inequality of Dao-Nguyen-Pham ([3]) is an easy consequence of the previous results.

Corollary 6 (Dao-Nguyen-Pham [3]). Let ABC be a triangle inscribed in a circle (O), and P be a point inside the triangle, with orthogonal projections D, E, F onto BC, CA, AB respectively, and H, K, L onto the tangents to (O) at A, B, C respectively. Then

$$PH + PK + PL \geq 2(PD + PE + PF).$$

Proof. The conclusion follows by using Corollary 5 for the triangle determined by all three tangents, and the fact that the circle (O) is the incircle of this triangle. \qed

In fact, Corollary 4 and a similar reasoning lead us to the weighted version of the previous inequality (see [3, Theorem 4]). Now, we conclude our paper with the following application, motivated by a recent problem posed in American Mathematical Monthly ([2]).

Corollary 7. Let ABC be a triangle inscribed into a circle (O), and P be a point inside the triangle, with orthogonal projections D, E, F onto the tangents to (O) at A, B, C respectively. Then

$$\frac{PD}{a^2} + \frac{PE}{b^2} + \frac{PF}{c^2} \geq \frac{1}{R},$$

where R is the circumradius of triangle ABC.

Proof. The circumcircle (O) is the incircle of the triangle bounded by the three tangents at the vertices. Applying Corollary 4 with $\alpha = \frac{1}{a}$, $\beta = \frac{1}{b}$, $\gamma = \frac{1}{c}$, we have

$$\frac{PD}{a^2} + \frac{PE}{b^2} + \frac{PF}{c^2} \geq \frac{2d(P, BC)}{bc} + \frac{2d(P, AC)}{ac} + \frac{2d(P, AB)}{ab}$$

$$= \frac{2}{abc} \left(a \cdot d(P, BC) + b \cdot d(P, AC) + c \cdot d(P, AB) \right)$$

$$= \frac{2}{abc} \left(2[PBC] + 2[PCA] + 2[PAB] \right)$$

$$= \frac{4[ABC]}{abc}$$

$$= \frac{1}{R},$$

and the proof is complete. \qed
References

Dan Ștefan Marinescu: National College “Iancu de Hunedoara” of Hunedoara, Romania

E-mail address: marinescuds@gmail.com

Mihai Monea: University Politehnica of Bucharest and National College “Decebal” of Deva, Romania

E-mail address: mihaimonea@yahoo.com