The Simson Triangle and Its Properties

Todor Zaharinov

Abstract

Let $A B C$ be a triangle and P_{1}, P_{2}, P_{3} points on its circumscribed circle. The Simson triangle for P_{1}, P_{2}, P_{3} is the triangle bounded by their Simson lines with respect to triangle $A B C$. We study some interesting properties of the Simson triangle.

1. Introduction

The following theorem is often called Simson's theorem. (see [2, p. 137, Theorem 192])

Theorem 1 (Wallace-Simson line). The feet of the perpendiculars to the sides of triangle from a point are collinear, if and only if the point is on the circumscribed circle of the triangle. This is Simson line (or Wallace-Simson line).

Definition (Simson triangle). The Simson triangle is the triangle bounded by the Simson lines of three points on the circumscribed circle of a fixed triangle. It is degenerate if the three Simson lines are concurrent.

Figure 1

Theorem 2 (Orthopole, (see [2, p. 247, Theorem 406])). If perpendiculars are dropped on a line from the vertices of a triangle, the perpendiculars to the opposite sides from their feet are concurrent at a point called the orthopole of the line.

[^0]
2. Notations

$A B C$ is a triangle of reference.
The circumcircle \mathcal{K} of $\triangle A B C$ has center O and radius R.
$P_{1} \in \mathcal{K}, P_{2} \in \mathcal{K}, P_{3} \in \mathcal{K}$.
l_{1}, l_{2}, l_{3} are the Simson lines of P_{1}, P_{2}, P_{3} with respect to $A B C$.
$N_{1} N_{2} N_{3}$ is the Simson triangle bounded by these Simson lines:

$$
N_{1}=l_{2} \cap l_{3}, \quad N_{2}=l_{3} \cap l_{1}, \quad N_{3}=l_{1} \cap l_{2}
$$

The circumcircle of $\triangle N_{1} N_{2} N_{3}$ is \mathcal{K}_{2} with center O_{2} and radius R_{2}.
The orthocenter of $\triangle A B C$ is H.
The orthocenter of $\triangle P_{1} P_{2} P_{3}$ is H_{1}.
The orthocenter of $\triangle N_{1} N_{2} N_{3}$ is H_{2}.
The center of nine-point circle for $A B C$ is E.
We will use complex numbers in the proofs.
By u we shall denote the complex number, corresponding to point U.
Without loss of generality, we take the circumcircle \mathcal{K} to be the unit circle. Then $R=1$ and $O=0$.
$a \cdot \bar{a}=b \cdot \bar{b}=c \cdot \bar{c}=p_{1} \cdot \bar{p}_{1}=p_{2} \cdot \bar{p}_{2}=p_{3} \cdot \bar{p}_{3}=1$.
$h=a+b+c ; e=1 / 2(a+b+c) ; h_{1}=p_{1}+p_{2}+p_{3}$.
Lemma 3. Let V and W be points on the unit circle. The orthogonal projection of a point P onto the line $\ell=V W$ is given by

$$
p_{\ell}=\frac{1}{2}(v+w+p-v w \bar{p}) .
$$

In particular, if P is also on the unit circle, then

$$
p_{\ell}=\frac{1}{2}\left(v+w+p-\frac{v w}{p}\right) .
$$

Proof. Write the orthogonal projection as $p_{\ell}=(1-t) v+t w$ for some real number t. The vector $p-(1-t) v-t w$ is perpendicular to $B C$. This means that

$$
(p-(1-t) v-t w)(\bar{v}-\bar{w})+(\bar{p}-(1-t) \bar{v}-t \bar{w})(v-w)=0 .
$$

Since v and w are on the unit circle, $\bar{v}=\frac{1}{v}, \bar{w}=\frac{1}{w}$. We have

$$
(p-(1-t) v-t w)\left(\frac{1}{v}-\frac{1}{w}\right)+\left(\bar{p}-\frac{1-t}{v}-\frac{t}{w}\right)(v-w)=0 .
$$

From this,

$$
t=\frac{v-w-p+v w \bar{p}}{2(v-w)}
$$

and the orthogonal projection is

$$
p_{\ell}=(1-t) v+t w=\frac{1}{2}(v+w+p-v w \bar{p}) .
$$

If P is also on the unit circle, then $\bar{p}=\frac{1}{p}$, and $p_{\ell}=\frac{1}{2}\left(v+w+p-\frac{b c}{p}\right)$.

Proposition 4. Let P be a point on the unit circumcircle of triangle $A B C$. The equation of its Simson line is

$$
\begin{equation*}
2 a b c \bar{z}-2 p z+p^{2}+(a+b+c) p-(b c+c a+a b)-\frac{a b c}{p}=0 \tag{1}
\end{equation*}
$$

Proof. Let P be a point on the unit circumcircle. Its projections on the side lines of triangle $A B C$ are, by Lemma 3,

$$
\begin{aligned}
p_{a} & =\frac{1}{2}\left(b+c+p-\frac{b c}{p}\right) \\
p_{b} & =\frac{1}{2}\left(c+a+p-\frac{c a}{p}\right) \\
p_{c} & =\frac{1}{2}\left(a+b+p-\frac{a b}{p}\right)
\end{aligned}
$$

The line joining p_{b} and p_{c} has equation

$$
\begin{aligned}
0 & =\left|\begin{array}{ccc}
z & p_{b} & p_{c} \\
\bar{z} & \bar{p}_{b} & \bar{p}_{c} \\
1 & 1 & 1
\end{array}\right|=\left|\begin{array}{ccc}
z & \frac{1}{2}\left(c+a+p-\frac{c a}{p}\right) & \frac{1}{2}\left(a+b+p-\frac{a b}{p}\right) \\
\bar{z} & \frac{1}{2}\left(\frac{1}{c}+\frac{1}{a}+\frac{1}{p}-\frac{p}{c a}\right) & \frac{1}{2}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{p}-\frac{p}{a b}\right) \\
1 & 1 & 1
\end{array}\right| \\
& =\frac{(b-c)(p-a)\left(2 a b c p \bar{z}-2 p^{2} z+p^{3}+(a+b+c) p^{2}-(b c+c a+a b) p-a b c\right)}{4 a b c p^{2}} \\
& =\frac{(b-c)(p-a)\left(2 a b c \bar{z}-2 p z+p^{2}+(a+b+c) p-(b c+c a+a b)-\frac{a b c}{p}\right)}{4 a b c p} .
\end{aligned}
$$

Therefore, the equation of the Simson line of P is given by (1) above.
Proposition 5. The intersection of the Simson lines of two points $P, Q \in \mathcal{K}$ is the point with coordinates

$$
\begin{equation*}
\frac{1}{2}\left(p+q+a+b+c+\frac{a b c}{p q}\right) \tag{2}
\end{equation*}
$$

Proof. Let ℓ_{p}, ℓ_{q} be the Simson lines of two points P, Q on the unit circumcircle of $A B C$. Their intersection is given by the solution of

$$
\begin{align*}
& 2 a b c \bar{z}-2 p z+p^{2}+(a+b+c) p-(b c+c a+a b)-\frac{a b c}{p}=0 \tag{3}\\
& 2 a b c \bar{z}-2 q z+q^{2}+(a+b+c) q-(b c+c a+a b)-\frac{a b c}{q}=0 \tag{4}
\end{align*}
$$

Subtracting (4) from (3), we obtain

$$
-2(p-q) z+\left(p^{2}-q^{2}\right)+(a+b+c)(p-q)-a b c\left(\frac{1}{p}-\frac{1}{q}\right)=0
$$

Dividing by $2(p-q)$, we obtain z as given in (2) above.

3. Simson triangle

Theorem 6. The Simson triangle $N_{1} N_{2} N_{3}$ is directly similar to triangle $P_{1} P_{2} P_{3}$ (see Figure 1).
Proof. For three points P_{1}, P_{2}, P_{3} on \mathcal{K}, by Proposition 5, the pairwise intersections of their Simson lines are

$$
\begin{aligned}
n_{1} & =\frac{1}{2}\left(p_{2}+p_{3}+a+b+c+\frac{a b c}{p_{2} p_{3}}\right) \\
n_{2} & =\frac{1}{2}\left(p_{3}+p_{1}+a+b+c+\frac{a b c}{p_{3} p_{1}}\right) \\
n_{3} & =\frac{1}{2}\left(p_{1}+p_{2}+a+b+c+\frac{a b c}{p_{1} p_{2}}\right)
\end{aligned}
$$

the vertices of the Simson triangle. Note that

$$
\begin{aligned}
n_{2}-n_{3} & =\frac{1}{2}\left(p_{3}+p_{1}+a+b+c+\frac{a b c}{p_{3} p_{1}}\right)-\frac{1}{2}\left(p_{1}+p_{2}+a+b+c+\frac{a b c}{p_{1} p_{2}}\right) \\
& =\frac{1}{2}\left(p_{3}-p_{2}+\frac{a b c\left(p_{2}-p_{3}\right)}{p_{1} p_{2} p_{3}}\right) \\
& =\frac{a b c-p_{1} p_{2} p_{3}}{2 p_{1} p_{2} p_{3}}\left(p_{2}-p_{3}\right) .
\end{aligned}
$$

Since the factor $k:=\frac{a b c-p_{1} p_{2} p_{3}}{2 p_{1} p_{2} p_{3}}$ is symmetric in p_{1}, p_{2}, p_{3}, we conclude that

$$
N_{2} N_{3}=k \cdot P_{2} P_{3}, \quad N_{3} N_{1}=k \cdot P_{3} P_{1}, \quad N_{1} N_{2}=k \cdot P_{1} P_{2}
$$

and the triangles $N_{1} N_{2} N_{3}$ and $P_{1} P_{2} P_{3}$ are directly similar.
Corollary 7. The Simson triangle $N_{1} N_{2} N_{3}$ has circumradius $\frac{\left|a b c-p_{1} p_{2} p_{3}\right|}{2}$, and circumcenter at the midpoint of the segment joining the orthocenters ${ }^{H}$ of $A B C$ and H_{1} of $P_{1} P_{2} P_{3}$ (see Figure 2).

Proof. Since the Simson triangle is similar to $P_{1} P_{2} P_{3}$ with similarity factor $k=$ $\frac{\left|a b c-p_{1} p_{2} p_{3}\right|}{2}$, it clearly has circumradius k.

The orthocenters of triangles $A B C$ and $P_{1} P_{2} P_{3}$ are the points

$$
h=a+b+c \quad \text { and } \quad h_{1}=p_{1}+p_{2}+p_{3}
$$

With these, we rewrite

$$
n_{1}=\frac{h_{1}+h}{2}+\frac{1}{2}\left(\frac{a b c}{p_{2} p_{3}}-p_{1}\right)=\frac{h_{1}+h}{2}+\frac{1}{2}\left(\frac{a b c-p_{1} p_{2} p_{3}}{p_{2} p_{3}}\right)
$$

Therefore,

$$
\left|n_{1}-\frac{h_{1}+h}{2}\right|=\frac{1}{2}\left|\frac{a b c-p_{1} p_{2} p_{3}}{p_{2} p_{3}}\right|=k
$$

since $\left|p_{2}\right|=\left|p_{3}\right|=1$. The same relation holds if n_{1} is replaced by n_{2} and n_{3}. This shows that the Simson triangle has circumcenter $\frac{h_{1}+h}{2}$, which is the midpoint of H_{1} and H. It also confirms independently that the circumradius is k.

Figure 2

4. The Simson triangle and orthopoles

Lemma 8. Let V and W be points on the unit circumcircle of triangle $A B C, A_{1}$ the orthogonal projection of A onto $V W$. The perpendicular from A_{1} to $B C$ has equation

$$
\begin{equation*}
\bar{z}-\frac{z}{b c}+\frac{a-(v+w)}{2 v w}+\frac{\left(a^{2}-b c\right)+a(v+w)-v w}{2 a b c}=0 \tag{5}
\end{equation*}
$$

Proof. By Lemma 3, the coordinates a_{1} of A_{1} and its complex conjugate are

$$
\begin{aligned}
& a_{1}=\frac{1}{2}\left(v+w+a-\frac{v w}{a}\right) \\
& \bar{a}_{1}=\frac{-a^{2}+a(v+w)+v w}{2 a v w}
\end{aligned}
$$

By Lemma 3 again, the coordinates a_{2} of the orthogonal projection A_{2} of A_{1} onto $B C$, together with its complex conjugate, are

$$
\begin{aligned}
a_{2} & =\frac{1}{2}\left(b+c+a_{1}-b c \bar{a}_{1}\right) \\
& =\frac{a^{2} b c-a b c(v+w)+\left(a^{2}-b c+2 c a+2 a b\right) v w+a v w(v+w)-v^{2} w^{2}}{4 a v w}, \\
\bar{a}_{2} & =\frac{-a^{2} b c+a b c(v+w)-\left(a^{2}-b c-2 c a-2 a b\right) v w-a v w(v+w)+v^{2} w^{2}}{4 a b c v w} .
\end{aligned}
$$

The line $A_{1} A_{2}$ contains a point with coordinates z if and only if

$$
\begin{aligned}
0 & =\left|\begin{array}{ccc}
z & a_{1} & a_{2} \\
\bar{z} & \bar{a}_{1} & \bar{a}_{2} \\
1 & 1 & 1
\end{array}\right| \\
& =\frac{f(a, b, c, v, w) g(a, b, c, v, w, z)}{8 a^{2} b c v^{2} w^{2}}
\end{aligned}
$$

where

$$
\begin{aligned}
f(a, b, c, v, w):= & a^{2} b c-a b c(v+w)-\left(a^{2}+b c-2 c a-2 a b\right) v w \\
& -a v w(v+w)+v^{2} w^{2} \\
g(a, b, c, v, w, z):= & 2 a b c v w \bar{z}-2 a v w z+a^{2} b c-a b c(v+w) \\
& +\left(a^{2}-b c\right) v w+a v w(v+w)-v^{2} w^{2} .
\end{aligned}
$$

Therefore, the equation of the perpendicular is $g(a, b, c, v, w, z)=0$. Dividing by $2 a b c v w$, we obtain the equation (5).

Now we consider the construction in Lemma 8 beginning with all three vertices of $\triangle A B C$. This results in the three lines

$$
\begin{aligned}
& \bar{z}-\frac{z}{b c}+\frac{a-(v+w)}{2 v w}+\frac{\left(a^{2}-b c\right)+a(v+w)-v w}{2 a b c}=0 \\
& \bar{z}-\frac{z}{c a}+\frac{b-(v+w)}{2 v w}+\frac{\left(b^{2}-c a\right)+b(v+w)-v w}{2 a b c}=0 \\
& \bar{z}-\frac{z}{a b}+\frac{c-(v+w)}{2 v w}+\frac{\left(c^{2}-a b\right)+c(v+w)-v w}{2 a b c}=0
\end{aligned}
$$

The intersection of the last two lines is given by

$$
\begin{aligned}
& -\frac{z}{c a}+\frac{z}{a b}+\frac{b-(v+w)}{2 v w}-\frac{c-(v+w)}{2 v w} \\
& \quad+\frac{\left(b^{2}-c a\right)+b(v+w)-v w}{2 a b c}-\frac{\left(c^{2}-a b\right)+c(v+w)-v w}{2 a b c}=0 \\
& - \\
& -\frac{(b-c) z}{a b c}+\frac{b-c}{2 v w}+\frac{(b-c)(a+b+c+v+w)}{2 a b c}=0
\end{aligned}
$$

Multiplying by $\frac{a b c}{b-c}$, we obtain

$$
z=\frac{1}{2}\left(a+b+c+v+w+\frac{a b c}{v w}\right)
$$

Note that this is symmetric in a, b, c. This means that the three perpendiculars form A_{1} to $B C, B_{1}$ to $C A$, and C_{1} to $A B$ are concurrent. The point of concurrency is the orthopole N of the line $V W$. By Proposition 5, this is also the same as the intersection of the Simson lines of V and W with respect to $\triangle A B C$ (see Figure 3
and [1, p.289, Theorem 697]). Applying this to the three side lines of the triangle $P_{1} P_{2} P_{3}$ for three points $P_{1}, P_{2}, P_{3} \in \mathcal{K}$, we obtain the following theorem.

Figure 3

Theorem 9. For three points P_{1}, P_{2}, P_{3} on the circumcircle \mathcal{K} of $\triangle A B C$, the orthopoles of the lines $P_{2} P_{3}, P_{3} P_{1}, P_{1} P_{2}$ coincide with the vertices N_{1}, N_{2}, N_{3} of the Simson triangle bounded by the Simson lines of P_{1}, P_{2}, P_{3} with respect to $\triangle A B C$.

5. Examples

Example 1. Let $\triangle P_{1} P_{2} P_{3}$ be an equilateral triangle. The circumcenter of the Simson triangle coincides with the center of nine-point circle for $\triangle A B C$.

Proof. If $P_{1} P_{2} P_{3}$ is equilateral, its orthocenter coincides with the circumcenter. This means that $p_{1}+p_{2}+p_{3}=0$. The circumcenter of the Simson triangle is $\frac{1}{2}\left(a+b+c+p_{1}+p_{2}+p_{3}\right)=\frac{1}{2}(a+b+c)$, the center E of the nine-point circle of $\triangle A B C$.

Example 2. Let $P_{1} \in \mathcal{K}$ and let $P_{1} E$ meet the circle \mathcal{K} again in P_{3} (E is the center of nine-point circle for $\triangle A B C$). Let $P_{2} \in \mathcal{K}$ and $E P_{2} \perp P_{1} P_{3}$. Then the circumcenter of the Simson triangle lies on the circle with center H (the orthocenter) and radius $\frac{1}{2} R$ (see Figure 4).

Proof. Let P_{4} be another point of \mathcal{K} on the line $P_{2} E$.

$$
\begin{aligned}
P_{1} P_{3} \perp P_{2} P_{4} & \Rightarrow\left(p_{1}-p_{3}\right)\left(\frac{1}{p_{2}}-\frac{1}{p_{4}}\right)+\left(\frac{1}{p_{1}}-\frac{1}{p_{3}}\right)\left(p_{2}-p_{4}\right)=0 \\
& \Rightarrow\left(p_{1}-p_{3}\right)\left(p_{2}-p_{4}\right)\left(p_{1} p_{3}+P_{2} p_{4}\right)=0
\end{aligned}
$$

Figure 4

Therefore, $p_{1} p_{3}+p_{2} p_{4}=0$ (see [3, p. 45]).
By Lemma 3 or [3, p. 45],

$$
\begin{aligned}
& E \in P_{1} P_{3} \Rightarrow p_{1}+p_{3}=e+p_{1} p_{3} \bar{e} \\
& E \in P_{2} P_{4} \Rightarrow p_{2}+p_{4}=e+p_{2} p_{4} \bar{e}
\end{aligned}
$$

Therefore,

$$
p_{1}+p_{2}+p_{3}+p_{4}=2 e+p_{1} p_{3}+p_{2} p_{4}=2 e=a+b+c
$$

By Theorem 7, the circumcenter O_{2} of the Simson triangle of $P_{1} P_{2} P_{2}$ has coordinates

$$
o_{2}=\frac{1}{2}\left(a+b+c+p_{1}+p_{2}+p_{3}\right)=a+b+c-\frac{p_{4}}{2}
$$

and $\left|o_{2}-h\right|=\left|\frac{p_{4}}{2}\right|=\frac{1}{2}$. Hence, O_{2} lies on a circle with radius $\frac{1}{2} R$ and center H.

Example 3. Let $A, B, C, A^{\prime}, B^{\prime}, C^{\prime}$ be points on a circle \mathcal{K}. Construct the Simson triangle for $A^{\prime}, B^{\prime}, C^{\prime}$ with respect to $\triangle A B C$ and the Simson triangle for A, B, C with respect to $\triangle A^{\prime} B^{\prime} C^{\prime}$. The six vertices of these two Simson triangles lie on a circle (see Figure 5).

Proof. Let $N_{1} N_{2} N_{3}$ be the Simson triangle for $A^{\prime}, B^{\prime}, C^{\prime}$ with respect to $\triangle A B C$, and $N_{1}^{\prime} N_{2}^{\prime} N_{3}^{\prime}$ that of A, B, C with respect to $\triangle A^{\prime} B^{\prime} C^{\prime}$. By Theorem 7 , the circumcircles of $N_{1} N_{2} N_{3}$ and $N_{1}^{\prime} N_{2}^{\prime} N_{3}^{\prime}$ both have radius $\frac{\left|a b c-a^{\prime} b^{\prime} c^{\prime}\right|}{2}$, and center $\frac{1}{2}\left(a+b+c+a^{\prime}+b^{\prime}+c^{\prime}\right)$. Therefore the two circumcircles coincide.

Figure 5

References

[1] N. A. Court, College Geometry, Barnes \& Noble, New York, 1957.
[2] R. A. Johnson, Advanced Euclidean Geometry, New York, 1960.
[3] R. Malcheski, S. Grozdev, and K. Anevska, Geometry Of Complex Numbers, 2015, Sofia, Bulgaria

Todor Zaharinov: Darvenitsa j.k., bl.15, vh.D, ap.107, 1756 Sofia, Bulgaria
E-mail address: zatrat@abv.bg

[^0]: Publication Date: June 28, 2017. Communicating Editor: Paul Yiu.

