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Properties of a Pascal Points Circle in a Quadrilateral
with Perpendicular Diagonals

David Fraivert

Abstract. The theory of a convex quadrilateral and a circle that forms Pascal
points is a new topic in Euclidean geometry. The theory deals with the properties
of the Pascal points on the sides of a convex quadrilateral and with the properties
of circles that form Pascal points.

In the present paper, we shall continue developing the theory, and we shall
define the concept of the “Pascal points circle”.

We shall prove four theorems regarding the properties of the points of inter-
section of a Pascal points circle with a quadrilateral that has intersecting perpen-
dicular diagonals.

1. Introduction: General concepts and Fundamental Theorem ofthe theory
of a convex quadrilateral and a circle that forms Pascal points

First, we shall briefly survey the definitions of some essential concepts ofthe
theory of a convex quadrilateral and a circle that forms Pascal points onits sides,
and then we shall present this theory’s Fundamental Theorem (see [1], [2], [3]).
The theory considers the situation in whichABCD is a convex quadrilateral for
which there exists a circleω that satisfies the following two requirements:

(i) Circleω passes through pointE, the point of intersection of the diagonals,
and through pointF , the point of intersection of the extensions of sides
BC andAD.

(ii) Circle ω intersects sidesBC andAD at interior points (pointsM andN ,
respectively, in Figure 1).

The Fundamental Theorem of the theory holds in this case.

The Fundamental Theorem.
Let there be: a convex quadrilateral; a circle that intersects a pair of opposite sides
of the quadrilateral, that passes through the point of intersection of the extensions
of these sides, and that passes through the point of intersection of the diagonals.
In addition, let there be four straight lines, each of which passes both through the
point of intersection of the circle with a side of the quadrilateral and throughthe
point of intersection of the circle with the extension of a diagonal.
Then there holds: the straight lines intersect at two points that are located on the
other pair of opposite sides of the quadrilateral.
(In Figure 2, straight linesh andg intersect at pointP on sideAB, and straight
linesi andj intersect at pointQ on sideCD).
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Figure 1 Figure 2 Figure 3

The Fundamental Theorem is proven using the general Pascal’s Theorem (see
[1]).

Definitions
Because the proof of the properties of the points of intersectionP andQ is based
on Pascal’s Theorem,

(I) points P andQ are termedPascal points on sidesAB and CD of the
quadrilateral;

(II) the circle that passes through points of intersectionE andF and through
two opposite sides is termeda circle that forms Pascal points on the sides
of the quadrilateral.

We define a new concept: Pascal points circle.

(III) We shall call a circle whose diameter is segmentPQ (see Figure 3) aPas-
cal points circle.

2. Properties of a quadrilateral with perpendicular intersecting diagonals, a
circle that forms Pascal points, and a Pascal points circle.

Theorem 1.
Let ABCD be a quadrilateral with perpendicular diagonals in whichE is the
point of intersection of the diagonals andF is the point of intersection of the ex-
tensions of the sidesBC andAD; ωEF is the circle whose diameter is segment
EF . Then,
(a)circle ωEF forms Pascal points on sidesAB andCD (see Figure 4);
there are an infinite number of circles that form Pascal points on sidesAB and
CD;
(b) for every circle,ω, that intersects sidesBC andAD at pointsM andN ,
respectively, and forms Pascal pointsP andQ on sidesAB andCD, respectively,
there holds:
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the point of intersection,T , of the tangents to circleω at pointsM andN is the
middle of segmentPQ.

Figure 4.

Proof.
(a) Let us show that circleωEF intersects sidesBC andAD at internal points.
In circle ωEF , angle∡EMF equals90◦. Therefore, in right triangle△BCE,
segmentEM is an altitude to hypotenuseBC, and hence it follows that the foot
of altitudeEM (pointM in Figure 4) is an interior point of sideBC. Similarly,
we prove that pointN (the base of the altitude to hypotenuseAD in right triangle
△ADE) is an internal point of sideAD.
Based on the fundamental theorem, since circleωEF intersects sidesBC andAD
at internal points, this circle necessarily forms Pascal points on sidesAB andCD.
It is clear that if there is even one circle that passes through pointsE andF and also
through internal points of sidesBC andAD, then there must be an infinite number
of such circles. Therefore, in our case, there are an infinite number ofcircles that
pass through pointsE andF and through internal points of sidesBC andAD. All
these circles form Pascal points on sidesAB andCD.

(b) Let us employ the following property that holds true for a convex quadrilateral
(whose diagonals are not necessarily perpendicular) and a circle,ω, that forms
Pascal pointsP andQ on sidesAB andCD.
We denote:M andN are the intersection points of circleω with sidesBC and
AD, respectively, andK andL are the intersection points of circleω with the ex-
tensions of diagonalsBD andAC, respectively(see Figure 5).
It thus holds that the four pointsP , Q, T , andR (P andQ are the two Pascal
points,T is the point of intersection of the tangents to the circle at pointsM and
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N , andR is the point of intersection of the tangents to the circle at pointsK and

L) constitute a harmonic quadruple, in other words, there holds:
QT

TP
=
QR

RP
(see

[3, Theorem 1].)

In our case, the quadrilateral has perpendicular diagonals.
Therefore,∡KEL = 90◦ and segmentKL is a diameter ofω. Therefore, the tan-
gents to circleω at pointsK andL are parallel to each other (see Figure 6). In this

case, their point of intersection,R, is at infinity, and ratio
QR

RP
equals1. Hence it

also holds that
QT

TP
= 1, orQT = TP . In other words, pointT is the middle of

segmentPQ. �

Theorem 2.
Let ABCD be a quadrilateral with perpendicular diagonals in whichE is the
point of intersection of the diagonals andF is the point of intersection of the ex-
tensions of sidesBC andAD; ω is a circle that passes through pointsE andF
and intersects sidesBC andAD at pointsM andN , respectively;P andQ are
Pascal points formed usingω on sidesAB andCD, respectively;σPQ is a circle
whose diameter is segmentPQ (a Pascal points circle);T is the center of circle
σPQ (see Figure 7).
Then,
(a) SidesBC andAD each have at least one common point with circleσPQ. In
other words:
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(1) In the case that the center,O, of circleω does not belong to straight lines
BF andAF , circle σPQ intersects sidesBC andAD at two points each.
Two of these four points of intersection areN andM ; the other two points
are denoted asV andW (see Figure 7).

(2) When centerO lies on straight lineBF , circleσPQ is tangent to sideBC
at pointM . In this case, pointV coincides withM .

(3) When centerO lies on straight lineAF , circle σPQ is tangent to sideAD
at pointN . In this case, pointW coincides withN .

(b) PointsV , T , andW lie on the same straight line. This property holds even in
cases when pointV coincides with pointM or pointW coincides with pointN .
(c) Circlesω andσPQ are perpendicular to each other.

Figure 7.

Proof.
(a) We shall use the method of complex numbers in plane geometry. (The princi-
ples of the method and a system of formulas that we use in the proofs appear, for
example, in [6, pp. 154-181]; some isolated formulas may be found in [4], [5]).
Let us choose a system of coordinates such that circleω is the unit circle (O is
the origin, and the radius isOE = 1). In this system, the equation of circleω is
z · z = 1, wherez is the complex coordinate of some pointZ that belongs to circle
ω, andz is the conjugate ofz.
We denote the complex coordinates of pointsK, L,M andN by k, l,m andn, re-

spectively. These points are located on unit circleω, therefore there holds:k =
1

k
,

l =
1

l
,m =

1

m
, andn =

1

n
.

PointP is the point of intersection of straight linesKN andLM . Let us express
the complex coordinate ofP (and its conjugate) using the coordinates of pointsK,
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L,M , andN . We shall use the following formula:
LetA(a), B(b), C(c), andD(d) be four points on the unit circle, and letS(s) be
the point of intersection of straight linesAB andCD. Then the coordinates and
its conjugates satisfy:

s =
a+ b− c− d

ab− cd
and s =

bcd+ acd− abd− abc

cd− ab
(I)

In our case, segmentKL is a diameter of circleω. Therefore,k = −l, and the
expressions forp andp are:

p =
n+ k −m− l

nk −ml
=

2l +m− n

l (m+ n)
and p =

2mn+ nl −ml

m+ n
.

Now, let us find complex coordinatet of pointT (which is the point of intersection
of the tangents to the unit circle at pointsM andN ). We use the following formula:
LetS(s) be the point of intersection of the tangents to the unit circle at pointsA(a)
andB(b), which are located on the circle. Then coordinate s and its conjugates

satisfy:

s =
2ab

a+ b
and s =

2

a+ b
. (II)

In our case, we obtain for coordinatet and its conjugatet the following:

t =
2mn

m+ n
and t =

2

m+ n
.

PointT is the center of circleσPQ. Therefore, the equation of circleσPQ is

(z − t)
(
z − t

)
= r2σPQ

,

whererσPQ
is the radius of the circle, andz is the complex coordinate of some

pointZ that belongs to the circle.
Let us find the square of the radius of circleσPQ. Point P lies on the circle,
therefore the following equality holds:(p− t)

(
p− t

)
= r2σPQ

.
Let us substitute the expressions forp andp in the left-hand side of the equality.
We obtain:

(
2mn+ nl −ml

m+ n
−

2mn

m+ n

)(
2l +m− n

l (m+ n)
−

2

m+ n

)

=
nl −ml

m+ n
·
m− n

l (m+ n)
= −

(
m− n

m+ n

)2

.

In other words, there holdsr2σPQ
= −

(
m− n

m+ n

)2

. Therefore, the equation for cir-

cleσPQ is

(

z −
2mn

m+ n

)(

z −
2

m+ n

)

= −

(
m− n

m+ n

)2

. (1)

Now let us find the equations of straight linesBC andAD and, subsequently, their
points of intersection with circleσPQ.
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We use the following formula of a straight line passing through two pointsA(a)
andB(b) belonging to the unit circle:

z + abz = a+ b. (III)

In accordance with this formula, the equation of straight lineBC (which passes
through pointsF (f) andM(m) that belong to the unit circle) shall bez+ fmz =
f +m. Hence:

z = −
1

fm
z +

f +m

fm
. (2)

We substitute the expression forz from (2) into (1) and obtain:
(

z −
2mn

m+ n

)(

−
1

fm
z +

f +m

fm
−

2

m+ n

)

+

(
m− n

m+ n

)2

= 0,

−
1

fm
z2 +

(
f +m

fm
−

2

m+ n
+

2mn

fm (m+ n)

)

z

−
2mn (f +m)

fm (m+ n)
+

4mn

(m+ n)2
+

(m− n)2

(m+ n)2
= 0.

This leads to the following quadratic equation:

(m+ n) z2 −
(
3mn− fm+ fn+m2

)
z + fmn+ 2m2n− fm2 = 0. (3)

The solutions of this equation are:

z1,2 =

3mn− fm+ fn+m2 ±

√
(
3mn− fm+ fn+m2

)2

−4 (m+ n)
(
fmn+ 2m2n− fm2

)

2 (m+ n)

=
3mn− fm+ fn+m2 ±

√

(m− n)2 (m+ f)2

2 (m+ n)
.

Equation (3) is a quadratic equation with complex coefficients.
It follows that if expression(m− n)2 (m+ f)2 does not equal0, then (3) will have
two solutions. In the present case it necessarily holds thatm 6= −f , and hence it
follows that pointsF andM are not the ends of the diameter of circleω. This
means that the center,O, of the circle does not belong to straight lineMF (the line
BF ). In this case the two solutions of the equation are:

z1 =
3mn− fm+ fn+m2 + (m− n) (m+ f)

2 (m+ n)
=

2mn+ 2m2

2 (m+ n)
= m,

and

z2 =
3mn− fm+ fn+m2 − (m− n) (m+ f)

2 (m+ n)
=

2mn− fm+ fn

m+ n
.

It is clear that the first solution is the complex coordinate of pointM , and the
second solution is the coordinate of another point that belongs to straight lineBC
(denoted byV ).
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In other words:v =
2mn− fm+ fn

m+ n
.

Similarly, one can prove that in the case where the center,O, of circleω does not lie
on straight lineAF , circleσPQ will intersect straight lineAD at two points: 1) at
pointN , and 2) at some other point (designated asW ) whose complex coordinate

can be expressed asw =
2mn− fn+ fm

m+ n
.

If (m− n)2 (m+ f)2 = 0 holds, then Equation (3) has a single solution. For two
different pointsM andN located on unit circleω, there holdsm 6= n, therefore
necessarily there holdsm = −f . In other words, pointsF andM are the ends of
a diameter of circleω, and therefore centerO of the circle belongs to straight line
BF .
In this case, the only solution of the equation is:

z =
3mn− fm+ fn+m2

2 (m+ n)
=

3mn+m2 −mn+m2

2 (m+ n)
=

2mn+ 2m2

2 (m+ n)
= m.

In other words, in this case, lineBF is tangent to circleσPQ at pointM .
Similarly, we can prove that when the center,O, of ω belongs to lineAF , lineAF
will be tangent to circleσPQ at pointN .

(b) Let us prove that pointsV , T , andW lie on the same straight line (see Figure
7).
We shall use the following formula, which gives the relation between the coordi-
nates of any three collinear pointsA(a),B(b), andC(c):

a
(
b− c

)
+ b (c− a) + c

(
a− b

)
= 0. (IV)

According to this formula, pointsV , T , andW are collinear provided the following
equality holds:

v
(
t− w

)
+ t (w − v) + w

(
v − t

)
= 0. (4)

Let us first calculate the conjugates of coordinatesv andw:

v =
2mn− fm+ fn

m+ n
=

2

mn
−

1

fm
+

1

fn
1

m
+

1

n

=
2f − n+m

f (m+ n)

and similarly

w =
2f −m+ n

f (m+ n)
.

We substitute the expressions fort, t, v, v, w, andw into (4), to obtain:

2mn− fm+ fn

m+ n

(
2

m+ n
−

2f −m+ n

f (m+ n)

)

+
2mn

m+ n

(
2f −m+ n

f (m+ n)
−

2f − n+m

f (m+ n)

)

+
2mn− fn+ fm

m+ n

(
2f − n+m

f (m+ n)
−

2

m+ n

)

= 0.
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After simplifying the left-hand side, we have:

2mn− fm+ fn

m+ n
·

m− n

f (m+ n)
+

2mn

m+ n
·
2n− 2m

f (m+ n)

+
2mn− fn+ fm

m+ n
·

m− n

f (m+ n)
= 0,

m− n

f (m+ n)2
· (2mn− fm+ fn− 4mn+ 2mn− fn+ fm)
︸ ︷︷ ︸

=0

= 0.

We have thus obtained0 = 0.
In other words, (IV) is satisfied, and therefore pointsV , T , andW must be on the
same straight line, and segmentVW is a diameter of circleσPQ.

(c) In (a), we proved that circlesω andσPQ intersect at pointsM andN , and
thereforerω = OM andrσPQ

= TM . Let us find the distance,OT , between the
centers of circlesω andσPQ:

OT 2 = (t− 0)
(
t− 0

)
=

(
2mn

m+ n
− 0

)(
2

m+ n
− 0

)

=
4mn

(m+ n)2
.

Now we calculate the sumr2ω + r2σPQ
:

r2ω + r2σPQ
= 1−

(
m− n

m+ n

)2

=
(m+ n)2 − (m− n)2

(m+ n)2
=

4mn

(m+ n)2
.

Therefore, the equationr2ω + r2σPQ
= OT 2 holds , and, specifically,OM2+TM2 =

OT 2 holds.
It thus follows that angle∡OMT is a right angle, and therefore lineOM is tangent
to circleσPQ, and lineTM is tangent toω.
We obtained that the tangents to circlesω andσPQ at the point of their intersection,
M , are perpendicular to each other.
Therefore the circles are perpendicular to each other. �

Conclusions from Theorem 2.
(1) We obtained that the two segmentsPQ andVW are diameters of circleσPQ.
Therefore their lengths are equal, and they bisect each other (at pointT ). It follows
that quadrilateralPV QW is a rectangle (see Figure 8).

Note: RectanglePV QW (in which two opposite vertices are Pascal points) is
usually different from the rectangle inscribed in quadrilateralABCD in such a
manner that its sides are parallel to diagonalsAC andBD, which are perpendicular
to each other. (In Figure 8 rectanglePXY Z is inscribed in the quadrilateral and
its sides are parallel to the diagonals of the quadrilateral.)

(2) For any quadrilateral,ABCD, with perpendicular diagonals and any circle,ωi,
that forms a pair of Pascal pointsPi andQi on sidesAB andCD, one can define
a rectangle that is inscribed in quadrilateralABCD as follows:
We construct a Pascal points circleσPiQi

that intersects sidesBC andAD at points
Vi andWi (in addition to pointsNi andMi). PointsPi, Vi, Qi, andWi define a
rectangle inscribed in quadrilateralABCD.
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Figure 8.

(3) Letω be a circle that passes through pointsE andF , intersects sidesBC and
AD at pointsM andN , respectively, and forms Pascal pointsP andQ on sides
AB andCD. T is the point of intersection of the tangents to circleω at pointsM
andN .
In this case, the circle whose center is at pointT and whose radius is segmentTM
is the Pascal points circleσPQ.

Explanation: In Theorem 1 we proved that the tangents to circleω at pointsM and
N intersect in the middle of segmentPQ (at pointT ). In Theorem 2 we proved
that Pascal points circleσPQ passes through pointsM andN .

Theorem 3.
Let ABCD be a quadrilateral with perpendicular diagonals in whichE is the
point of intersection of the diagonals andF is the point of intersection of the ex-
tensions of sidesBC andAD; ωEF is a circle whose diameter is segmentEF ;
Circle ωEF intersects sidesBC andAD at pointsM0 andN0, respectively, and
forms Pascal pointsP0 andQ0 on sidesAB andCD; σP0Q0

is thePascal points
circleof pointsP0 andQ0. Then:
(a) Circle σP0Q0

intersects the sides of quadrilateralABCD at 8 points, as fol-
lows:
It intersects sideAB at pointsP0 andM1, sideBC at M0 andV0, sideCD at
pointsQ0 andN1, sideAD atN0 andW0. (In Figure 9, one can observe the fours
points of intersection mentioned in Theorem 2,N0,M0, V0, andW0, and also two
additional points of intersection,M1 andN1).
(b) ChordsV0N0,W0M0,Q0M1, andP0N1 of the circle intersect at pointE.
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Figure 9.

Proof.
The center,O, of circleωEF does not belong to straight linesFB andFA. There-
fore, from Theorem 2, circleσP0Q0

intersects each of the sidesBC andAD at two
points (at pointsM0 andV0, and at pointsN0 andW0, respectively). Therefore,
it remains to be proven thatσP0Q0

intersects each of the other two sides at two
points.
We will first prove one additional property that holds for the points of intersec-
tion of circleσP0Q0

with sidesBC andAD. We will show that chordsV0N0 and
W0M0 both pass through pointE.
We choose a system of coordinates such that circleωEF is the unit circle (O is the
origin and the radius,OE, equals 1).
From formula (IV) in the proof of Theorem 2, pointsN0 (n), E (e) andV0 (v) are
collinear provided the following equality holds:

n (e− v) + e (v − n) + v (n− e) = 0.

For e, e, v, andv there holds:e = −f (because segmentEF is the diameter of

the unit circle),e = −
1

f
, v =

2mn− fm+ fn

m+ n
, andv =

2f − n+m

f (m+ n)
(see the

proof of Theorem 2).
We substitute these expressions in the left-hand side of the formula above, and
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obtain:

n (e− v) + e (v − n) + v (n− e)

= n

(

−
1

f
−

2f − n+m

f (m+ n)

)

− f

(
2f − n+m

f (m+ n)
−

1

n

)

+
2mn− fm+ fn

m+ n

(
1

n
+

1

f

)

= n ·
−2m− 2f

f (m+ n)
− f ·

fn− n2 +mn− fm

fn (m+ n)
+

(2mn− fm+ fn) (f + n)

fn (m+ n)

=
0

fn (m+ n)

= 0.

In other words, the equality holds and therefore the pointsN0, E, andV0 are
collinear (see Figure 9).
Similarly, we also prove that pointsM0, E, andW0 are collinear.
To find the remaining two points of intersection, we follow the following path:
The first stage is to find two points that can be candidates for the intersectionof
circleσP0Q0

with sidesAB andCD. The second stage is to prove that these two
points are really the points of intersection of circleσP0Q0

with sidesAB andCD.
It is reasonable to assume that the property satisfied for the four points ofintersec-
tion of circleσP0Q0

with sidesBC andAD shall also hold for the four points of
intersection of circleσP0Q0

with sidesAB andCD. Therefore, at the first stage
we shall choose pointsM1 andN1 to be our candidates, which are the intersection
points of lineAB with lineQ0E and lineCD with line P0E, respectively.
At the second stage, we shall prove that the pointsM1 andN1 belong to circle
σP0Q0

.
Using formula (IV) we obtain the equation of straight lineAB.
The formula holds for three collinear pointsA(a), B(b), andC(c). If we replace
the coordinate of pointC by the coordinate of some pointZ(z) that belongs to
straight lineAB, we obtain the equation ofAB:

a
(
b− z

)
+ b (z − a) + z

(
a− b

)
= 0.

This can be put in the form:

z =
a− b

a− b
z +

ab− ab

a− b
. (V)

Let us express the coordinates ofA(a) andB(b) (and their conjugates) using the
coordinates of pointsF ,E,K, L,M , andN , which lie on the unit circle. We shall
use the formulas (I) from the proof of Theorem 2.
In our case, segmentsK0L0 andEF are diameters of circleωEF . Therefore, there
holds thatk = −l ande = −f . The following expressions are therefore obtained:

a =
2nl + fl − fn

n+ l
, a =

2f + n− l

f (n+ l)
,

b =
2ml + fl + fm

l −m
, b =

2f +m+ l

f (m− l)
.
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We substitute these expressions into (V) to obtain:

z =

2f + n− l

f (n+ l)
−

2f +m+ l

f (m− l)
2nl + fl − fn

n+ l
−

2ml + fl + fm

l −m

z

+

2nl + fl − fn

n+ l
·
2f +m+ l

f (m− l)
−

2f + n− l

f (n+ l)
·
2mk + fl + fm

l −m

2nl + fl − fn

n+ l
−

2ml + fl + fm

l −m

.

After simplifying, we obtain:

z =
fm− fn− 2fl −ml − nl

fl (fm+ fn+ 2mn+ml − nl)
z

+
2fnl + 2fml + 2f2l + 2mnl − f2n+ f2m+ nl2 −ml2

fl (fm+ fn+ 2mn+ml − nl)
. (5)

Similarly, we can obtain the equation of lineQE: we replace the lettersa andb in

(V) with the letterse andq to obtain:z =
q − e

q − e
z +

qe− qe

q − e
.

In our case there holds:e = −f ande = −
1

f
.

PointQ is the point of intersection of straight linesKM andLN . In addition, in
our case there holds thatk = −l. Therefore, from the formulas (I) forq andq, we

obtain the following expressions:q =
2mn+ml − nl

m+ n
andq =

2l + n−m

l (m+ n)
.

We substitute these expressions in the equation of straight lineQE, and obtain:

z =

2l + n−m

l (m+ n)
+

1

f

2mn+ml − nl

m+ n
+ f

z +

2mn+ml − nl

m+ n
·

(

−
1

f

)

+
2l + n−m

l (m+ n)
· f

2mn+ml − nl

m+ n
+ f

,

and after simplifying:

z =
2fl + fn− fm+ml + nl

fl (2mn+ml − nl + fm+ fn)
z

+
2f2l + f2n− f2m− 2mnl −ml2 + nl2

fl (2mn+ml − nl + fm+ fn)
. (6)

By equating the right-hand sides of (5) and (6), we obtain an expressionfor com-
plex coordinatezM1

of the intersection point of straight linesAB andQE:

zM1
=

we denote

m1 =
f2n− f2m− 2lmn− fml − fnl

fm− fn− 2fl −ml − nl
.

The expression for the conjugate ofm1 is:m1 =
ml − nl − 2f2 − fm− fn

f (nl −ml − 2mn− fm− fn)
.

We now prove that pointM1 belongs to circleσP0Q0
.

From formula (1) in the proof of Theorem 2, the equation of circleσP0Q0
is:
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(

z −
2mn

m+ n

)(

z −
2

m+ n

)

= −

(
m− n

m+ n

)2

.

Let us substitute the expressions form1 andm1 in the equation of the circle. We
obtain:

(
f2n− f2m− 2lmn− fml − fnl

fm− fn− 2fl −ml − nl
−

2mn

m+ n

)

×

(
ml − nl − 2f2 − fm− fn

f (nl −ml − 2mn− fm− fn)
−

2

m+ n

)

= −

(
m− n

m+ n

)2

Let us check if this equality is a true statement.
Observe the left-hand side of the equality. After adding fractions and collecting
similar terms, we obtain:

fn2 − fm2 − lm2 − ln2 + 2mnl − 2m2n− 2mn2

(fm− fn− 2fl −ml − nl) (m+ n)

×
lm2 − ln2 − fm2 − fn2 + 2fmn− 2fnl + 2fml

(nl −ml − 2mn− fm− fn) (m+ n)
.

After factoring the expressions in the numerators, we obtain:

(n−m) (fm+ fn− nl +ml + 2mn)

(fm− fn− 2fl −ml − nl) (m+ n)
·
(m− n) (ml + nl − fm+ fn+ 2fl)

(nl −ml − 2mn− fm− fn) (m+ n)

=
− (m− n)2 (−fm− fn+ nl −ml − 2mn) (−ml − nl + fm− fn− 2fl)

(fm− fn− 2fl −ml − nl) (nl −ml − 2mn− fm− fn) (m+ n)2

=−

(
m− n

m+ n

)2

.

We have obtained an identical expression on both sides of the equality. Therefore
the last equality is a true statement, and therefore pointM1 belongs to circleσP0Q0

.
Since pointM1 belongs to lineAB, it follows that circleσP0Q0

intersects straight
lineAB at pointM1.
Similarly, we can prove that circleσP0Q0

intersects straight lineCD at pointN1.
In summary, we have shown that the four chordsV0N0,W0M0,Q0M1, andP0N1

of circleσP0Q0
pass through pointE, which is, therefore, their point of intersection.

�

Conclusions from Theorems 1-3.
In proving Theorems 1-3 we considered a quadrilateral whose two opposite sides,
BC andAD, are not parallel, and we did not require any additional conditions
concerning the remaining opposite sides.
In the case that sidesAB andCD also intersect (we denote the point of their
intersection byG), there will be circles that pass through pointsE andG and form
Pascal points on sidesBC andAD. In this case, for these circles Theorems similar
to Theorems 1-3 shall hold (the proofs of these theorems are similar to the proofs
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of Theorems 1-3).
According to these theorems, the circle whose diameter is segmentEG (we denote
it by ψEG) satisfies the following properties:

(a) The circleψEG forms Pascal points on sidesBC andAD (for now we
denote these points byP andQ, respectively).

(b) The circleψEG and the circle whose diameter is segmentP Q are perpen-
dicular to each other, and they intersect at the points at which circleψEG

intersects sidesAB andCD (for now we denote these points byM and
N , respectively).

(c) The circle whose diameter is segmentP Q intersects sidesAB andCD at
pointsV andW (in addition to pointsM andN ). The four pointsP , V ,
Q, andW define a rectangle inscribed in quadrilateralABCD.

Theorem 4.
Let ABCD be a quadrilateral with perpendicular diagonals in whichE is the
point of intersection of the diagonals,F is the point of intersection of the extensions
of sidesBC andAD, andG is the point of intersection of the extensions of the sides
AB andCD; ωEF is a circle whose diameter is segmentEF which forms Pascal
pointsP0 andQ0 on sidesAB andCD, respectively;σP0Q0

is thePascal points
circle of pointsP0 andQ0, which intersects the sides of quadrilateralABCD at
the following eight points:P0,Q0,M0,N0, V0,W0,M1, andN1 (see Theorem 3);
ψEG is the circle whose diameter is segmentEG. Then:
(a)The circleψEG intersects sidesAB andCD at pointsM1 andN1, respectively.
(b) CirclesψEG andσP0Q0

are perpendicular to each other.
(c) PointsV0 andW0 are the Pascal points formed by circleψEG on sidesBC and
AD, respectively.
(d) The angle between diametersEF andEG of circlesωEF andψEG is equal
to one of the two angles between diametersP0Q0 andV0W0 of circle σP0Q0

(in
Figure 10, there holds:∡FEG = ∡V0EQ0).

Proof.
(a) In circleσP0Q0

, inscribed angle∡P0M1Q0 rests on diameterP0Q0. It therefore
holds that∡P0M1Q0 = 90◦, and therefore also∡EM1G = 90◦. Hence it follows
that pointM1 belongs to the circle whose diameter isEG (circleψEG).
Similarly,∡P0N1Q0 = 90◦. Therefore∡EN1G = 90◦ and thereforeN1 ∈ ψEG.

(b) Inscribed angles∡P0N1M1 and∡P0Q0M1 rest on the same arc,̂P0M1, in
circleσP0Q0

(see Figure 11). Therefore∡P0Q0M1 = ∡P0N1M1.
In addition, for angle∡TQ0M1 (which is another name for the angleP0Q0M1)
there holds:∡TQ0M1 = ∡TM1Q0 (because they are the base angles of isosceles
triangleTQ0M1). Therefore:

∡TM1Q0 = ∡P0N1M1. (7)

Similarly, in circleψEG there holds that∡EN1M1 = ∡EGM1, and also∡O1GM1

= ∡O1M1G. Therefore:

∡O1M1G = ∡EN1M1. (8)
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Figure 10.

Since angles∡P0N1M1 and∡EN1M1, which appear in the right-hand side of
equalities (7) and (8), are the same angle, therefore∡TM1Q0 = ∡O1M1G.
Now, consider angle∡TM1O1:

∡TM1O1 = ∡TM1Q0 + ∡Q0M1O1

= ∡TM1Q0 + (∡Q0M1G− ∡O1M1G)

= ∡TM1Q0 + 90◦ − ∡O1M1G

= 90◦.

We obtained that∡TM1O1 = 90◦, and thereforeM1T is tangent to circleψEG,
andM1O1 is tangent to circleσP0Q0

. Hence it follows that circlesσP0Q0
andψEG

are perpendicular to each other.

(c) CirclesσP0Q0
andψEG intersect at an additional point:N1. Therefore the tan-

gent to circleψEG at pointN1 also passes through the center,T , of circleσP0Q0
.

We obtained that the tangents to circleψEG at pointsM1 andN1 intersect at point
T . PointsM1 andN1 are the points of intersection of circleψEG with sidesAB
andCD. Therefore, from Conclusion 3 of Theorem 2, we have that the circle
whose center is pointT and whose radius is segmentTM1 is thePascal points
circle of the points formed by circleψEG on sidesAB andCD.
On the other hand, in Theorem 3, we have proven that Pascal points circle σP0Q0

passes through pointsM1 andN1, and its center is at pointT .
Therefore thePascal points circleof the points formed by circleψEG is circle
σP0Q0

.
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Figure 11.

In Theorem 3 we saw that circleσP0Q0
intersects sideBC at pointsM0 andV0 and

also intersects sideAD at pointsN0 andW0.
Of the four chords that connect a point on sideBC with a point on sideAD
(M0W0, N0V0, M0N0, andV0W0), only V0W0 passes throughT , the center of
the circleσP0Q0

. In other words, onlyV0W0 is a diameter of circleσP0Q0
.

Therefore pointsV0 andW0 are Pascal points formed by circleψEG on sidesBC
andAD.

(d) Let us prove that straight lineFE is perpendicular to diameterV0W0.
From Theorem 3, we have that segmentsW0M0 andV0N0 pass through pointE.
In circleσP0Q0

, angles∡W0M0V0 and∡V0N0W0 are inscribed angles resting on
diameterV0W0 (see Figure 10). Therefore, they are right angles.
We obtained that segmentsW0M0 andV0N0 in triangleFV0W0 are altitudes to
sidesFV0 andFW0, respectively, and thatE is their point of intersection. It fol-
lows that straight lineFE contains the third altitude (the altitude to sideW0V0) of
triangleFV0W0, and thereforeEF⊥V0W0.
Similarly, one can prove thatEG⊥P0Q0.
In summary, segmentsEF andEG are perpendicular to diametersV0W0 and
P0Q0, respectively, of circleσP0Q0

, and therefore angle∡FEG is equal to one
of the angles between diametersV0W0 andP0Q0. �

Conclusion from Theorems 2-4.
In a quadrilateral,ABCD, in which diagonals are perpendicular and intersect at



526 D. Fraivert

Figure 12.

pointE, and the extensions of the opposite sides intersect at pointsF andG, there
holds: the Pascal points formed by circlesωEF andψEG are the vertices of a
rectangle inscribed in the quadrilateral (see Figure 12).
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