Irrationality of $\sqrt{2}$: Yet Another Visual Proof

Samuel G. Moreno and Esther M. García–Caballero

Abstract. Another visual proof of the irrationality of $\sqrt{2}$.

Two identical right triangles intersect as shown in the figure resulting in a smaller right triangle which happens to be, as is easy to check, similar to the original ones.

Since \overline{AE} and \overline{CF} are parallel line segments, $\angle EAC = \angle ACF$. By symmetry, $\angle ACF = \angle DCE$ so that triangles DCE and CAE are similar. Moreover, $\angle ADB = \angle CDE$, but by similarity $\angle CDE = \angle ACE$. Since $\angle ACE = \angle CBG = \angle DBA$, it follows that triangle ADB is isosceles.

The ratio of the lengths of the legs in the right triangles ACE and CDE is $(\overline{AO} + \overline{OE})/\overline{CE} = (\overline{OC} + \overline{OE})/\overline{OE} = \sqrt{2} + 1$. If $\sqrt{2}$ is rational, so is $\sqrt{2} + 1$, and thus $\overline{AE} = m$ and $\overline{CE} = n$ for some positive integers m, n. Since ABD is
isosceles, then $DE = AE - AD = AE - AB = AE - 2CE = m - 2n$. This process may be repeated indefinitely, triggering an infinite decreasing sequence of positive integers $m > n > m - 2n > 5n - 2m > \cdots$. But this is impossible. Thus, $\sqrt{2}$ cannot be rational.

Reference

Samuel G. Moreno: Departamento de Matemáticas, E.P.S. Linares, Campus Científico Tecnológico, Universidad de Jaén, Avenida Universidad s/n, 23700 - LINARES, SPAIN
E-mail address: samuel@ujaen.es

Esther M. García–Caballero: Departamento de Matemáticas, E.P.S. Linares, Campus Científico Tecnológico, Universidad de Jaén, Avenida Universidad s/n, 23700 - LINARES, SPAIN
E-mail address: emgarcia@ujaen.es