Nicholas D. Brubaker, Jasmine Camero, Oscar Rocha Rocha, Roberto Soto, and Bogdan D. Suceavă,
A Curvature Invariant Inspired by Leonhard Euler's Inequality R ≥ 2r,
Forum Geometricorum, 18 (2018) 119--127.

Abstract. It is of major interest to point out natural connections between the geometry of triangles and various other areas of mathematics. In the present work we show how Euler´s classical inequality between circumradius and inradius inspires, by using a duality between triangle geometry and three-dimensional hypersurfaces lying in
, the definition of a curvature invariant. We investigate this invariant by relating it to other known curvature invariants.

[ps file] [pdf]

Return to Forum Geom., 18 (2018) Table of Contents