Side Disks of a Spherical Great Polygon

Purevsuren Damba and Uuganbaatar Ninjbat

Abstract. Take a circle and mark \(n \in \mathbb{N} \) points on it designated as vertices. For any arc segment between two consecutive vertices which does not pass through any other vertex, there is a disk centered at its midpoint and has its end points on the boundary. We analyze intersection behavior of these disks and show that the number of disjoint pairs among them is between \(\frac{(n-2)(n-3)}{2} \) and \(\frac{n(n-3)}{2} \) and their intersection graph is a subgraph of a triangulation of a convex \(n \)-gon.

1. Introduction

An intersection graph of a set of figures is a graph such that there is a unique vertex associated to each figure, and two vertices are adjacent if and only if the corresponding figures are intersecting. Huemer and Perez-Lantero [4] showed that the intersection graph of a set of disks with the sides of a convex \(n \)-gon as their diameters (which are called side disks) is planar (see Theorem 4 in [4]). This result has a direct combinatorial consequence: the number of disjoint pairs among these disks is at least \(\frac{(n-3)(n-4)}{2} \) which follows from the fact that every planar graph with \(n \) vertices has at most \(3(n-2) \) edges (see Corollary 11.1(b) in [3]).

We believe that the problem of analyzing intersection patterns of side disks is of considerable interest because of the geometrical challenges resulting from its unusual conclusion, i.e. it reflects on disjointness of geometrical figures. In Euclidean geometry a search for new results by replacing line segments with conic sections is often rewarding as illustrated in the following well known results: Pappus’s hexagon theorem vs. Pascal’s theorem, and Ceva’s theorem vs. Haruki’s theorem (see Chap. 6 in [1]). Accordingly, in Sect. 2 instead of a convex \(n \)-gon we consider a circle partitioned into \(n \in \mathbb{N} \) arc segments. The concept of side disk naturally extends to this setting: for each arc segment there is a unique disk centered at its midpoint and is having its two end points on its boundary. When \(n = 5 \) the resulting configuration already appears in Miquel’s five circles theorem (see Chap. 5 in [1]). In Theorem 3 we show that for \(n \geq 3 \) there are at least \(\frac{(n-2)(n-3)}{2} \) and at most \(\frac{n(n-3)}{2} \) disjoint pairs of side disks for the partitioned circle with \(n \) arc segments. We also verify that these bounds are tight for all \(n \geq 3 \) and the intersection graph of these disks is a subgraph of a triangulation of a convex polygon (see Theorem 4).

Publication Date: June 1, 2018. Communicating Editor: Paul Yiu.
Financial support from the National University of Mongolia (P2016-1225) is acknowledged.
Throughout this paper we use the following conventions. For any points \(X, Y\) and \(Z\) in the plane the line passing through \(X, Y\) is denoted as \(XY\)-line, their connecting line segment is denoted as \(XY\), and \(|XY|\) is its length. \(\angle XYZ\) is the angle between \(XY\) and \(YZ\) measured in the clockwise direction. For any disk \(\omega\), its boundary circle is denoted as \(\partial(\omega)\) and when there is no ambiguity we identify a given disk (or circle) with its center \(X\) and call it \(X\)-disk (or \(X\)-circle), etc. For any plane regions \(\omega\) and \(\tau\), \((\omega \cap \tau)\) is the region in their intersection, and \(\omega \subset \tau\) means the former is included (strictly) in the latter, i.e. every point in \(\omega\) is in \(\tau\) but not vice versa. For a point \(X\) and region \(\tau\), \(X \in \tau\) means \(X\) is located in \(\tau\) and \(X \notin \tau\) means the opposite.

2. The main results

Let \(C_n\) be a circle partitioned into \(n \in \mathbb{N}\) arc segments by marking \(n\) points on it. We identify each marked point as vertex and each arc segment between two consecutive vertices which does not pass through any other vertex as a side. Then, \(C_n\) is a spherical polygon with vertices at a great circle and we call it as spherical great polygon; for more on spherical polygons see e.g. Chap. 6.4 in [2]. The case where each side has the same length is denoted as \(C_n^3\). For each side of \(C_n\), there is a unique disk centered at its midpoint and is having its two end points on the boundary. This is the side disk of that side and two side disks are neighbouring if their corresponding sides are adjacent.

Notice that each side of \(C_n\) divides its disk into two parts, one of which intersects with the region enclosed by \(C_n\). We call this as inner part and the other as outer, and as a convention we include the corresponding arc of \(C_n\) to the inner part of the side disk, but not to the outer. Then, convexity implies that outer parts of two side disks of \(C_n\) do not intersect. We shall prove two lemmas.

Lemma 1. Let \(\omega\) be a given disk and \(A, B, C\) be points on \(\partial(\omega)\) such that \(AC\)-arc is a segment of \(AB\)-arc. If \(\omega_1\) and \(\omega_2\) are the side disks of \(AB\)-arc and \(AC\)-arc, respectively, then \((\omega \cap \omega_2) \subset (\omega \cap \omega_1)\) and any point in \((\omega \cap \omega_2)\) except \(A\) is in the interior of \(\omega_1\).

Proof. Let \(O_1\) and \(O_2\) be the centers of \(\omega_1\) and \(\omega_2\), respectively. Since \(AC\)-arc is contained in \(AB\)-arc, \(O_2\) must be on the \(AO_1\)-arc not passing through \(B\) (see Fig. 1). Since \(O_1\) is the mid-point of \(AB\)-arc, \(AO_1\)-arc is always less than a half of \(\partial(\omega)\). Thus, \(\angle O_1O_2A > \frac{\pi}{2}\) and \(\triangle AO_2O_1\) is an obtuse triangle with \(|AO_1| > |AO_2|\). Let \(O_3\) be the point on \(AO_1\) with \(|AO_3| = |AO_2|\), and \(\omega_3\) be the disk centered at \(O_3\) and is having \(A\) on its boundary (see the dashed disk in Fig. 1). Since \(A, O_3\) and \(O_1\) are collinear and \(|AO_1| > |AO_3|\), we have \(\omega_3 \subset \omega_1\) and \(A = \partial(\omega_3) \cap \partial(\omega_1)\). Then, we can conclude that \((\omega \cap \omega_3) \subset (\omega \cap \omega_1)\), and the only point in \((\omega \cap \omega_3)\) which is on \(\partial(\omega_1)\) is \(A\). On the other hand, \(\omega_2\) is a rotation of \(\omega_3\) around \(A\) in the direction to move its center from an interior point of \(\omega\), \(O_3\), to a boundary point, \(O_2\). Thus, we must have \((\omega \cap \omega_2) \subset (\omega \cap \omega_3)\), which implies \((\omega \cap \omega_2) \subset (\omega \cap \omega_3) \subset (\omega \cap \omega_1)\). Finally, from our proof it is clear that any point in \((\omega \cap \omega_2)\) except \(A\) must be in the interior of \(\omega_1\). \(\Box\)
Lemma 2. Let ω be a given disk and A, B, C, D be four points marked subsequently on $\partial(\omega)$. Further let ω_{ab} be the side disk corresponding to the AB-arc, and let ω_{bc}, ω_{cd} and ω_{da} be defined analogously (see Fig. 1). Let X be the intersection point of $\partial(\omega_{da})$ and $\partial(\omega_{cd})$, other than D; and Y, Z and T be defined analogously for the pairs $\partial(\omega_{cd})$ and $\partial(\omega_{bc})$, and $\partial(\omega_{ab})$ and $\partial(\omega_{db})$, respectively. Then,

(a) $X, Y \notin \omega_{ab}, Y, Z \notin \omega_{da}, Z, T \notin \omega_{cd}$ and $X, T \notin \omega_{bc}$; and
(b) Quadrilateral $XYZT$ is a rectangle.

Proof. To prove Lemma 2 (a), it suffices to show that $Z \notin \omega_{cd}$ as a similar argument applies to the others. Consider Fig. 1 and let the dashed disk ω_{bd} be the disk corresponding to BD-arc. It is well known, and can easily be proven that $\partial(\omega_{bd})$ passes through Y, which is the incenter of $\triangle BCD$ (see below). Notice that all conditions of Lemma 1 are met for ω, ω_{bd} and ω_{ab}. Thus, $Z \in (\omega \cap \omega_{ab})$ must be located in the interior of ω_{bd}. But then $Z \notin \omega_{cd}$ as the only point which is in $(\omega_{cd} \cap \omega_{bd} \cap \omega_{bc})$ is Y, and Y and Z are distinct points as $Y \in \partial(\omega_{bd})$ while $Z \notin \partial(\omega_{bd})$. This proves Lemma 2 (a).

Let H, G, F and W be the centers of ω_{ab}, ω_{bc}, ω_{cd} and ω_{da}, respectively. We claim that X, Y, Z and T are the incenters of $\triangle ADC$, $\triangle DCB$, $\triangle CBA$ and $\triangle BAD$, respectively (see Fig. 2). Notice that since F and W are the centers
of two circles intersecting at D and X, FW is a perpendicular bisector of DX and $\angle XFD = 2 \angle WFD$. Since W is the midpoint of AD-arc, we also have $\angle WFD = \frac{1}{2} \angle AFD$, which implies $\angle XFD = \angle AFD$. Thus, points F, X and A are collinear. Since F is the midpoint of DC-arc, $\angle DAF = \angle FAC$, hence AF is a bisector of $\angle DAC$. Similar argument shows that W, X and C are collinear and CW is a bisector of $\angle DCA$. Thus, X is the incenter of $\triangle ADC$. By the same token, we may conclude that Y, Z and T are the incenters of $\triangle DCB$, $\triangle CBA$ and $\triangle BAD$, respectively. Then, the result in Lemma 2 (b) follows from Problem 6.13 in [5]. □

Remark. From Lemma 1 it follows that the inner part of a side disk of C_n is always contained in C_n. Since outer parts of side disks of C_n are disjoint, this implies that two side disks of C_n with $n \geq 2$ intersect if and only if they intersect in the region enclosed by C_n. To our knowledge, the only widely known result directly related to Lemma 2 is Miquel's four circles theorem which states that when ω_{ab}, ω_{bc}, ω_{cd} and ω_{da} are not necessarily centered on $\partial(\omega)$, X, Y, Z, T are concyclic (see [7]; p.151). The result used in the last step of proving Lemma 2 (b) is often referred to as the Japanese theorem (see [6]).

For C_n, let $d(C_n)$ be the number of disjoint pairs among its side disks. Our main result is as follows.

Theorem 3. For $n \geq 3$, $\frac{(n-2)(n-3)}{2} \leq d(C_n) \leq \frac{n(n-3)}{2}$.

Proof. Since $d(C_3) = 0$, as all side disks are neighbouring, we assume $n \geq 4$. We prove the lefthand inequality in three steps.

STEP 1: Let us prove that $1 \leq d(C_4)$.

Let A, B, C, D be the points marked on C_4 and F, G, H, W be the centers of its four side disks. Further let X, Y, Z, T be points other than A, B, C, D in which pairs of neighbouring side disks intersect by their boundaries (see Fig. 4). By Lemma 2 (b), we know that $XYZT$ is a rectangle. Let $E = XZ \cap YT$, i.e. the intersection of the diagonals of $XYZT$. We claim that $E = WG \cap FH$. Since
\(|FY| = |FX|, |HZ| = |HT|\) and \(XYZT\) is a rectangle, points \(F, H\) and the midpoints of the sides \(XY\) and \(ZT\) are collinear. Similarly, \(G, W\) and the midpoints of \(ZY\) and \(TX\) are collinear. Thus, \(FH\) and \(GW\) intersect in a point where two bimedians of \(XYZT\) intersect, which must be \(E\). This proves our claim.

Since \(\angle XEY + \angle YEZ = \pi\) one of these two angles (summands) must be at most \(\frac{\pi}{2}\), and without loss of generality we may assume that \(\angle XEY \leq \frac{\pi}{2}\). Then, we claim that the side disks centered at \(F\) and \(H\) are disjoint. To see this, it suffices to prove that \(E\) is located outside of these side disks, as then we have \(|FE| > r_F\) and \(|EH| > r_H\), hence, \(|FH| = |FE| + |EH| > r_F + r_H\), where \(r_F\) and \(r_H\) are the radii of the disks to be shown as disjoint. Let us then prove that \(E \notin F\)-disk and a similar argument shows that \(E \notin H\)-disk. By Lemma 2 (a), \(XY\)-line separates \(F\) and rectangle \(XYZT\). Since \(E\) is an interior point of \(XYZT\), we can conclude that \(XY\)-line strictly separates \(E\) and \(F\).

Let \(M\) be the midpoint of \(XY\) and \(N = \partial(F\)-disk) \(\cap FH\). It is clear that \(N\) and \(E\) lie on the same half-plane with respect to \(XY\)-line, as both are strictly separated from \(F\) by the line. We know that \(FH\) passes through the midpoints of \(XY\) and \(ZT\), thus it must be orthogonal to \(XY\). Recall that, both \(E\) and \(N\) lie on \(FH\). Then, \(\angle XEY \leq \frac{\pi}{2}\) together with the observation that \(\angle XNY > \frac{\pi}{2}\) imply that \(|ME| > |MN|\). Then, \(|FE| = |FM| + |ME| > |FM| + |MN| = r_F\). Thus, \(E\) is outside of \(F\)-disk. This proves our last claim and completes STEP 1.

STEP 2: Consider \(C_n\) and its side disks, labeled as \(\omega_1, ..., \omega_n\) in the clockwise direction. For any \(i, j = 1, 2, ..., n\), let \((\omega_i, \omega_j)\) be the set of disks strictly between \(\omega_i\) and \(\omega_j\), in the clockwise direction. We shall prove that if \(\omega_i\) and \(\omega_j\) intersect, then any disk in \((\omega_i, \omega_j)\) is disjoint from any one in \((\omega_j, \omega_i)\).

We can assume that \(\omega_i\) and \(\omega_j\) are non-neighbouring as the result is trivial otherwise. Let \(\omega_i, \omega_j\) be side disks of \(AB\)-arc and \(CD\)-arc, respectively. Then, \(AB\)-arc

\(^1\)Take the circle centered at \(F\). It is clear that \(XY\) is strictly shorter than its diameter. Then, for any \(N^*\) lying on the minor arc connecting \(X\) and \(Y\), we have \(\angle XN^*Y > \frac{\pi}{2}\).
and \(CD\)-arc are disjoint and we can also assume that \(A, B, C, D\) are located subsequently in the clockwise order. Let \(\omega_{bc}\) and \(\omega_{da}\) be the side disks of \(BC\)-arc and \(DA\)-arc, respectively (see Fig. 5). Then by STEP 1 there must be a disjoint fair among \(\omega_i, \omega_j, \omega_{bc}\) and \(\omega_{da}\). But since the former two intersect, it must the latter two which are disjoint. By Lemma 1, we know that when restricted to the region enclosed by \(C_n, \omega_{bc}\) contains all disks in \((\omega_i, \omega_j)\), and similarly, \(\omega_{da}\) contains all disks in \((\omega_j, \omega_i)\). This implies that, none of the disks in \((\omega_i, \omega_j)\) intersects with a disk in \((\omega_j, \omega_i)\) in the region enclosed by \(C_n\). But since two side disks intersect only in that region, we can conclude that any disk in \((\omega_i, \omega_j)\) is disjoint from any one in \((\omega_j, \omega_i)\). This completes STEP 2.

STEP 3: Let us prove that for \(n \geq 4\), \(\frac{(n-2)(n-3)}{2} \leq d(C_n)\).

Take \(P_n\), a convex \(n\)-gon, and label its vertices with the side disks of \(C_n\) such that two disks of \(C_n\) are neighbouring if and only if their associated vertices in \(P_n\) are adjacent. Draw all \(\frac{n(n-1)}{2} - n\) diagonals of \(P_n\), and colour them with

- Red if the side disks corresponding to the end vertices intersect, and
- Blue if otherwise.

By STEP 2 we know that two red diagonals never cross in \(P_n\). The maximal set of non-crossing diagonals of \(P_n\) gives a triangulation of it, and every triangulation involves \(n - 3\) diagonals (see Theorem 1.8 in [2]). Thus, the number of red diagonals is at most \(n - 3\), and the number of blue diagonals is at least \(\frac{n(n-1)}{2} - n - (n - 3) = \frac{(n-2)(n-3)}{2}\). This immediately implies that \(\frac{(n-2)(n-3)}{2} \leq d(C_n)\), and completes STEP 3. The lefthand inequality in Theorem 3 is proved. Finally, since two neighbouring disks are never disjoint we have \(d(C_n) \leq \frac{n(n-3)}{2}\). \(\square\)

Remark. It is easy to show that the upper bound in Theorem 3 is attained on \(C_n^\ast\), i.e. it is tight. Let \(C_n^\triangle\) be a spherical great \(n\)-gon such that one of its side disks intersects with all the others, and any two of the other side disks intersect only if they are neighbouring. It is easy to show that this construction is well defined and \(d(C_n^\triangle) = \frac{(n-2)(n-3)}{2}\). Thus, the lower bound is also tight for \(n \geq 3\).
We can now characterize the intersection graph of side disks of C_n. Recall that a planar graph is outerplanar if it can be embedded in the plane so that all its vertices lie on the same (exterior) face (see Chap. 11 in [3]).

Theorem 4. The intersection graph of side disks of C_n for $n \geq 3$ is a subgraph of a triangulation of a convex n-gon. In particular, it is outerplanar.

Proof. Let $G(C_n)$ be the intersection graph. The result is obvious when $n = 3$. For $n \geq 4$, in STEP 2 of proof of Theorem 3 we showed that $G(C_n)$ can be drawn with no crossing edges. So, it is a subgraph of triangulation of the convex polygon with vertices at the centers of the side disks, hence outerplanar. □

References

Purevsuren Damba: Mathematics Department, The National University of Mongolia, Ulaanbaatar, Mongolia
E-mail address: purevsuren@smcs.num.edu.mn

Uuganbaatar Ninjbat: Mathematics Department, The National University of Mongolia, Ulaanbaatar, Mongolia
E-mail address: uugnaa.ninjbat@gmail.com