Orthopoles and Variable Flanks

Floor van Lamoen

Abstract

We extend Zaharinov's result on the perspector of the triangle of flank line orthopoles to variable flanks. The locus of perspectors is the Kiepert hyperbola.

1. Introduction

Zaharinov [3] has studied the orthopoles of the a-, b-, c-sides of the of the A-, B-, and C-flanks respectively. If we attach squares to the sides of triangle $A B C$ we find at each vertex of $A B C$ a flank triangle [2]. He found that these orthopoles form a triangle perspective with $A B C$, with the Vecten point as perspector. In this paper we extend the results to variable flanks, replacing the attached squares by similar rectangles, which Čerin [1] used to find various loci. We show that the orthopoles of variable flanks form triangles perspective with $A B C$, the locus of perspectors being the Kiepert hyperbola.

2. Orthopoles of flank lines

Consider rectangles $A B C_{b} C_{a}, B C A_{c} A_{b}$, and $C A B_{a} B_{c}$ attachted to the sides of triangle ABC and satisfying $\angle B A C_{b}=\angle C B A_{c}=\angle A C B_{a}=\phi$. We will calculate barycentrics for the orthopole of line $A_{b} C_{b}$, the B-flank line (see Figure 1).

We have that

$$
\begin{aligned}
& A_{b}=\left(-a^{2}: S_{C}+S_{\phi}: S_{B}\right), \\
& C_{b}=\left(S_{B}: S_{A}+S_{\phi}:-c^{2}\right) .
\end{aligned}
$$

Lines perpendicular to $A_{b} C_{b}$ are parallel to the B-median of $A B C$ as the orthocenter and centroid are friends (see [2]). So these lines meet the line at infinitiy \mathcal{L}^{∞} in the point $(1:-2: 1)$.
The perpendicular ℓ_{A} through A to $A_{b} C_{b}$ hence has equation $\ell_{A}: \quad y+2 z=0$, while the equation for $A_{b} C_{b}$ is given by

$$
\left(S^{2}+\left(c^{2}+S_{B}\right) S_{\phi}\right) x+S^{2} y+\left(S^{2}+\left(a^{2}+S_{B}\right) S_{\phi}\right) z=0 .
$$

If we denote by $\bar{\phi}$ the complement of ϕ, the latter equation can be rewritten as

$$
\left(S_{B}+c^{2}+S_{\bar{\phi}}\right) x+S_{\bar{\phi}} y+\left(S_{B}+a^{2}+S_{\bar{\phi}}\right) z=0,
$$

[^0]noting that $S^{2}=S_{\phi \bar{\phi}}$.
So the point A^{\prime} where ℓ_{A} and $A_{b} C_{b}$ intersect has coordinates
$$
A^{\prime}=\left(-S_{B}-a^{2}+S_{\bar{\phi}}:-2\left(S_{B}+c^{2}+S_{\bar{\phi}}\right): S_{B}+c^{2}+S_{\bar{\phi}}\right)
$$

Similarly, if ℓ_{C} is the perpendicular through C to $A_{b} C_{b}$, then the point C^{\prime} where ℓ_{C} and $A_{b} C_{b}$ meet has coordinates

$$
C^{\prime}=\left(S_{B}+a^{2}+S_{\bar{\phi}}:-2\left(S_{B}+a^{2}+S_{\bar{\phi}}\right):-S_{B}-c^{2}+S_{\bar{\phi}}\right) .
$$

Figure 1.

Now the line through A^{\prime} perpendicular to $B C$ is given by

$$
\begin{aligned}
& \left(S_{B}+a^{2}\right)\left(S_{B}+c^{2}+S_{\bar{\phi}}\right) x+\left(\left(S_{B}+a^{2}\right) S_{\bar{\phi}}+S^{2}\right) y \\
& \quad+\left(\left(S_{B}+a^{2}\right) S_{\bar{\phi}}+S_{B}\left(S_{C}+3 a^{2}\right)+a^{2}\left(b^{2}+c^{2}\right)\right) z=0 .
\end{aligned}
$$

With a similar result for the line through C^{\prime} perpendicular to $A B$ we find as point of intersection for these two lines the orthopole of the B-flank line

$$
\begin{aligned}
B_{\mathrm{orth}}= & \left(S^{2}\left(2 a^{2}-b^{2}+2 c^{2}\right)\left(S_{C}+S_{\bar{\phi}}\right)\right. \\
& :-4 S^{2}\left(2 a^{2}-b^{2}+2 c^{2}\right)\left(a^{2}+c^{2}+S_{\bar{\phi}}\right) \\
& \left.: S^{2}\left(2 a^{2}-b^{2}+2 c^{2}\right)\left(S_{A}+S_{\bar{\phi}}\right)\right) \\
= & \left(S_{C}+S_{\bar{\phi}}:-4\left(a^{2}+c^{2}+S_{\bar{\phi}}\right): S_{A}+S_{\bar{\phi}}\right)
\end{aligned}
$$

By symmetry this shows that the triangle of the three orthopoles of the flank lines is perspective to $A B C$, the Kiepert perspector $K_{\bar{\phi}}$ being the perspector. For variable flanks the line will hence run through the Kiepert hyperbola. As $K_{\bar{\phi}}$ and K_{ϕ} are friends, we know that the line connecting $B, K_{\bar{\phi}}$, and $B_{\text {orth }}$ will also pass through the apices of isosceles triangles erected on $A C$ and $A_{b} C_{b}$ with base angles $\bar{\phi}$ and ϕ respectively. Naturally, the orthopole of $B C$ and the Kiepert ϕ-perspector, both with respect to the B-flank, join this line, to complete the friendly symmetry.

References

[1] Z. Čerin, Loci related to variable flanks, Forum Geom., 2 (2002) 105-113.
[2] F. M. van Lamoen, Friendship among triangle centers, Forum Geom., 1 (2001) 1-6.
[3] T. Zaharinov, Orthopoles, flanks, and Vecten points, Forum Geom., 17 (2017) 401-410.

Floor van Lamoen: Ostrea Lyceum, Fruitlaan 3, 4462 EP Goes, The Netherlands
E-mail address: fvanlamoen@planet.nl

[^0]: Publication Date: November 19, 2018. Communicating Editor: Paul Yiu.

