Simple Proofs of Feuerbach's Theorem and Emelyanov's Theorem

Nikolaos Dergiades and Tran Quang Hung

Abstract

We give simple proofs of Feuerbach's Theorem and Emelyanov's Theorem with the same idea of using the anticomplement of a point and homogeneous barycentric coordinates.

1. Proof of Feuerbach's Theorem

Feuerbach's Theorem is known as one of the most important theorems with many applications in elementary geometry; see $[1,2,3,5,6,8,9,10,12]$.

Theorem 1 (Feuerbach, 1822). In a nonequilateral triangle, the nine-point circle is internally tangent to the incircle and is externally tangent to the excircles.

Figure 1
We establish a lemma to prove Feuerbach's Theorem.
Lemma 2. The circumconic $p^{2} y z+q^{2} z x+r^{2} x y=0$ is tangent to line at infinity $x+y+z=0$ if and only if

$$
(p+q+r)(-p+q+r)(p-q+r)(p+q-r)=0
$$

Publication Date: November 19, 2018. Communicating Editor: Paul Yiu.
and the point of tangency is the point $Q=(p: q: r)$ or $Q_{a}=(-p: q: r)$ or $Q_{b}=(p:-q: r)$ or $Q_{c}=(p: q:-r)$ according to which factor of the above product is zero.

Proof. We shall prove that the system

$$
\left\{\begin{array}{l}
p^{2} y x+q^{2} z x+r^{2} x y=0 \\
x+y+z=0
\end{array}\right.
$$

has only one root under the above condition.
Substituting $x=-y-z$, we get

$$
p^{2} y z-\left(q^{2} z+r^{2} y\right)(y+z)=0
$$

The resulting quadratic equation for y / z is

$$
r^{2} y^{2}+\left(q^{2}+r^{2}-p^{2}\right) y z+q^{2} z^{2}=0 .
$$

This quadratic equation has discriminant

$$
\begin{aligned}
D & =\left(q^{2}+r^{2}-p^{2}\right)^{2}-4(q r)^{2} \\
& =-(p+q+r)(-p+q+r)(p-q+r)(p+q-r)
\end{aligned}
$$

Thus (1) has only one root if and only if the discriminant $D=0$.
If $\varepsilon_{1} p+\varepsilon_{2} q+\varepsilon_{3} r=0$ for $\varepsilon_{1}, \varepsilon_{2}, \varepsilon_{3}= \pm 1$, then $D=0$, which means that the circumconic $p^{2} y z+q^{2} z x+r^{2} x y=0$ or $\frac{p^{2}}{x}+\frac{q^{2}}{y}+\frac{r^{2}}{z}=0$ has a double point on the line at infinity and that the point $Q=\left(\varepsilon_{1} p, \varepsilon_{2} q, \varepsilon_{3} r\right)$ lies on the line at infinity and also on the circumconic because $\frac{p^{2}}{\varepsilon_{1} p}+\frac{q^{2}}{\varepsilon_{2} q}+\frac{r^{2}}{\varepsilon_{3} r}=\varepsilon_{1} p+\varepsilon_{2} q+\varepsilon_{3} r=0$. Hence this point Q is the double point on the line at infinity of the circumconic.

That leads to a proof of the lemma.
Remark. The conic which is tangent to the line at infinity must be a parabola. Thus our lemma is exactly a characterization of the circumparabola of a triangle.

Proof of Feuerbach's Theorem. Let G be the centroid of triangle $A B C$, and the incircle of $A B C$ touch $B C, C A$, and $A B$ at D, E, and F respectively. The homothety $\mathcal{H}(G,-2)$ transforms a point P to its anticomplement P^{\prime}, which divides $P G$ in the ratio $P G: G P^{\prime}=1: 2$ (see [11]). We consider the anticomplement of the points D, E, and F, which are X, Y, and Z respectively (see Figure 2). Under the homothety $\mathcal{H}(G,-2)$, the nine-point circle of $A B C$ transforms to circumcircle (Γ) of $A B C$. Thus, it is sufficient to show that the circumcircle (ω) of triangle $X Y Z$ is tangent to (Γ).

Let M be the midpoint of $B C$. Then $\mathcal{H}(G,-2)$ maps M to A. Thus, $A X=$ $2 D M=|b-c|$, and $A X$ is also tangent to (ω). We deduce that the power of A with respect to (ω) is $A X^{2}=(b-c)^{2}$. Similarly, the power of B with respect to (ω) is $(c-a)^{2}$, and the power of C with respect to (ω) is $(a-b)^{2}$.

Using the equation of a general circle in [12], we have the equation of (ω) as follows:

$$
a^{2} y z+b^{2} z x+c^{2} x y-(x+y+z)\left((b-c)^{2} x+(c-a)^{2} y+(a-b)^{2} z\right)=0 .
$$

Hence, the line $L:(b-c)^{2} x+(c-a)^{2} y+(a-b)^{2} z=0$ is the radical axis of (Γ) and (ω).

Analogously with the excircles, we can find that the radical axes of the circumcircle with the homothetic of the excircles under $\mathcal{H}(G,-2)$ are the lines

$$
\begin{aligned}
& L_{a}:(b-c)^{2} x+(c+a)^{2} y+(a+b)^{2} z=0, \\
& L_{b}:(b+c)^{2} x+(c-a)^{2} y+(a+b)^{2} z=0, \\
& L_{c}: \\
&(b+c)^{2} x+(c+a)^{2} y+(a-b)^{2} z=0 .
\end{aligned}
$$

Figure 2
In order to prove Feuerbach's theorem, we shall prove that the lines L, L_{a}, L_{b}, and L_{c} are tangent to the circumcircle (Γ) of $A B C$: The isogonal conjugate of L, L_{a}, L_{b}, and L_{c} are respectively the conics

$$
\begin{aligned}
L L: & (a(b-c))^{2} y z+(b(c-a))^{2} z x+(c(a-b))^{2} x y=0, \\
L L_{a}: & (a(b-c))^{2} y z+(b(c+a))^{2} z x+(c(a+b))^{2} x y=0, \\
L L_{b}: & (a(b+c))^{2} y z+(b(c-a))^{2} z x+(c(a+b))^{2} x y=0, \\
L L_{c}: & \\
& (a(b+c))^{2} y z+(b(c+a))^{2} z x+(c(a-b))^{2} x y=0 .
\end{aligned}
$$

Using Lemma 2, we easily check that the conics $L L, L L_{a}, L L_{b}$, and $L L_{c}$ are tangent to the line at infinity $x+y+z=0$, which is the isogonal conjugate of circumcircle (Γ).

In particular, for $L L$, the point of tangency is the point $Q=(a(b-c): b(c-a)$: $c(a-b)$), and in order to find the Feuerbach point (which is the contact point of nine-point circle with the incircle), we find the isogonal conjugate of Q. This is $\left(\frac{a}{b-c}: \frac{b}{c-a}: \frac{c}{a-b}\right)$, the anticomplement of X_{11}.

This completes the proof.

2. Proof of Emelyanov's Theorem

Continuing with the idea of using the anticomplement of a point [11] and barycentric coordinates [12], we give a simple proof for Lev Emelyanov's theorem [4, 7].

Theorem 3 (Emelyanov, 2001). The circle passing through the feet of the internal bisectors of a triangle contains the Feuerbach point of the triangle.

Lemma 4. Let $A B C$ be a triangle and the point $P(x: y: z)$ in homogeneous barycentric coordinates, with cevian triangle $A^{\prime} B^{\prime} C^{\prime}$. If M is the midpoint of $B C$, then signed length of $M A^{\prime}$ is

$$
M A^{\prime}=\frac{z-y}{2(y+z)} B C .
$$

Proof. Because $A^{\prime} B^{\prime} C^{\prime}$ is the cevian triangle of $P, A^{\prime}=(0: y: z)$. Using signed lengths of segments, we have $B A^{\prime}=\frac{z}{y+z} B C$ and $C A^{\prime}=\frac{y}{y+z} C B$. Therefore, we get the signed length of $M A^{\prime}$:

$$
M A^{\prime}=\frac{B A^{\prime}+C A^{\prime}}{2}=\frac{1}{2}\left(\frac{z}{y+z} B C+\frac{y}{y+z} C B\right)=\frac{z-y}{2(y+z)} B C .
$$

We are done.
Proof of Emelyanov's Theorem. In the triangle ABC , let A_{1}, B_{1}, and C_{1} be the feet of the internal bisectors of the angles A, B, and C respectively. Let (γ) be the circumcircle of the triangle $A_{1} B_{1} C_{1}$, we must prove that (γ) contains the Feuerbach point F_{e}.

Let the circle (γ) meet the sides $B C, C A$ and $A B$ again at A_{2}, B_{2} and C_{2} respectively. From Carnot's theorem [12], we have that the triangle $A_{2} B_{2} C_{2}$ is the cevian triangle of a point $I^{*}=(x: y: z)$ such that $B C_{1} \cdot B C_{2}=B A_{1} \cdot B A_{2}$ and $C A_{1} \cdot C A_{2}=C B_{1} \cdot C B_{2}$. From these, we get

$$
\frac{a c}{a+b} \cdot \frac{x c}{x+y}=\frac{z a}{y+z} \cdot \frac{c a}{b+c} \quad \text { and } \quad \frac{b a}{b+c} \cdot \frac{y a}{y+z}=\frac{x b}{z+x} \cdot \frac{a b}{c+a}
$$

or

$$
\begin{array}{lll}
a_{1}=a(a+b), & b_{1}=(a-c)(a+b+c), & c_{1}=-c(b+c), \\
a_{2}=-a(c+a), & b_{2}=b(b+c), & c_{2}=(b-a)(a+b+c) .
\end{array}
$$

We have the system

$$
\begin{gathered}
\left\{\begin{array}{l}
a_{1} y z+b_{1} z x+c_{1} x y=0 \\
a_{2} y z+b_{2} z x+c_{2} x y=0
\end{array}\right. \\
\Longleftrightarrow \frac{y z}{\left|\begin{array}{ll}
b_{1} & c_{1} \\
b_{2} & c_{2}
\end{array}\right|}=\frac{z x}{\left|\begin{array}{ll}
c_{1} & a_{1} \\
c_{2} & a_{2}
\end{array}\right|}=\frac{x y}{\left|\begin{array}{ll}
a_{1} & b_{1} \\
a_{2} & b_{2}
\end{array}\right|}
\end{gathered}
$$

or

$$
(x: y: z)=\left(\left|\begin{array}{ll}
b_{1} & c_{1} \\
b_{2} & c_{2}
\end{array}\right|:\left|\begin{array}{ll}
c_{1} & a_{1} \\
c_{2} & a_{2}
\end{array}\right|:\left|\begin{array}{ll}
a_{1} & b_{1} \\
a_{2} & b_{2}
\end{array}\right|\right)^{-1}
$$

This gives

$$
\begin{aligned}
I^{*}= & \left(a b c+(a+b+c)\left(-a^{2}+b^{2}+c^{2}\right)\right. \\
& : a b c+(a+b+c)\left(a^{2}-b^{2}+c^{2}\right) \\
& \left.: a b c+(a+b+c)\left(a^{2}+b^{2}-c^{2}\right)\right)^{-1} .
\end{aligned}
$$

I^{*} is also the cyclocevian of I which is the point $X(1029)$ [5].

Figure 3

Let M be the midpoint of $B C$. Using Lemma 4, the signed length of $M A_{1}$ is

$$
M A_{1}=\frac{c-b}{2(b+c)} B C
$$

and the signed length of $M A_{2}$ is

$$
M A_{2}=\frac{\left(\frac{1}{a b c+(a+b+c)\left(a^{2}+b^{2}-c^{2}\right)}-\frac{1}{a b c+(a+b+c)\left(a^{2}-b^{2}+c^{2}\right)}\right)}{2\left(\frac{1}{a b c+(a+b+c)\left(a^{2}-b^{2}+c^{2}\right)}+\frac{1}{a b c+(a+b+c)\left(a^{2}+b^{2}-c^{2}\right)}\right)} B C
$$

An easy simplification leads to

$$
M A_{2}=\frac{\left(c^{2}-b^{2}\right)(a+b+c)}{2 a(c+a)(a+b)} B C
$$

Let G be the centroid of $A B C$: We consider the anticomplement of the points A_{1}, B_{1}, and C_{1}, which are the points A_{3}, B_{3}, and C_{3}. Under the homothety $\mathcal{H}(G,-2)$, in order to prove that (γ) contains the Feuerbach point of $A B C$, we shall show that the circumcircle (Ω) of the triangle $A_{3} B_{3} C_{3}$ contains the anticomplement of the Feuerbach point. Indeed, as in our above proof of Feuerbach's theorem, we showed that anticomplement of Feuerbach point is

$$
X(100)=\left(\frac{a}{b-c}: \frac{b}{c-a}: \frac{c}{a-b}\right)
$$

Because the anticomplement of M is A, the power of A with respect to circumcircle of triangle $A_{3} B_{3} C_{3}$ is
$p=2 M A_{1} \cdot 2 M A_{2}=\frac{(c-b)}{(b+c)} B C \cdot \frac{\left(c^{2}-b^{2}\right)(a+b+c)}{a(c+a)(a+b)} B C=\frac{a(a+b+c)(b-c)^{2}}{(c+a)(a+b)}$.
Similarly, the powers of B and C with respect to circumcircle of triangle $A_{3} B_{3} C_{3}$ are

$$
q=\frac{b(a+b+c)(c-a)^{2}}{(b+c)(b+a)} \quad \text { and } \quad r=\frac{c(a+b+c)(a-b)^{2}}{(c+a)(b+c)}
$$

respectively.
Using the equation of a general circle in [12] again, we have the equation of (Ω) :

$$
a^{2} y z+b^{2} z x+c^{2} x y-(x+y+z)(p x+q y+r z)=0
$$

Using the coordinates of $X(100)$, we easily check the expression

$$
a^{2} y z+b^{2} z x+c^{2} x y=a^{2} \cdot \frac{b}{c-a} \cdot \frac{c}{a-b}+b^{2} \cdot \frac{c}{a-b} \cdot \frac{a}{b-c}+c^{2} \cdot \frac{a}{b-c} \cdot \frac{b}{c-a}=0
$$

and

$$
\begin{aligned}
p x+q y+r z= & p \cdot \frac{a}{b-c}+q \cdot \frac{b}{c-a}+r \cdot \frac{c}{a-b} \\
= & \frac{a(a+b+c)(b-c)^{2}}{(c+a)(a+b)} \cdot \frac{a}{b-c}+\frac{b(a+b+c)(c-a)^{2}}{(b+c)(b+a)} \cdot \frac{b}{c-a} \\
& \quad+\frac{c(a+b+c)(a-b)^{2}}{(c+a)(b+c)} \cdot \frac{c}{a-b} \\
= & 0
\end{aligned}
$$

Hence, the coordinates of $X(100)$ satisfy the equation of (Ω). This means that (Ω) passes through the anticomplement of the Feuerbach point. In other words (γ) passes through Feuerbach point. This completes our proof of Emelyanov's theorem.

References

[1] A. Bogomolny, Feuerbach's Theorem, Interactive Mathematics Miscellany and Puzzles, http://www.cut-the-knot.org/Curriculum/Geometry/Feuerbach.shtml.
[2] H. S. M. Coxeter, Introduction to Geometry, 2nd edition, John Wiley \& Sons, Hoboken, N.J., 1969.
[3] H. S. M. Coxeter and S. L. Greitzer, Geometry Revisited, The Math. Assoc. of America, 1967.
[4] L. Emelyanov and T. Emelyanova, A Note on the Feuerbach Point, Forum Geom., 1 (2001) 121-124.
[5] C. Kimberling, Encyclopedia of Triangle Centers, available at http://faculty.evansville.edu/ck6/encyclopedia/ETC.html.
[6] J. S. MacKay, History of the nine point circle, Proc. Edinb. Math. Soc., 11 (1892) 1961.
[7] H. M. Nguyen and D. P. Nguyen, Synthetic proofs of two theorems related to the Feuerbach point, Forum Geom., 12 (2012) 39-46.
[8] K. J. Sanjana, An elementary proof of Feuerbach's theorem, Mathematical Notes 22 (1924) 11-12, Edinburgh Mathematical Society.
[9] M. J. G. Scheer, A simple vector proof of Feuerbach's theorem, Forum Geom., 11 (2011) 205210.
[10] E. W. Weisstein, Feuerbach's Theorem, from MathWorld - A Wolfram Web Resource, http://mathworld.wolfram.com/FeuerbachsTheorem.html.
[11] E. W. Weisstein, Anticomplement, from MathWorld - A Wolfram Web Resource, http://mathworld.wolfram.com/Anticomplement.html.
[12] P. Yiu, Introduction to the Geometry of the Triangle, Florida Atlantic University Lecture Notes, 2001; with corrections, 2013, available at http://math.fau.edu/Yiu/Geometry.html.

Nikolaos Dergiades: I. Zanna 27, Thessaloniki 54643, Greece.
E-mail address: ndergiades@yahoo.gr
Tran Quang Hung: High school for Gifted students, Hanoi University of Science, Hanoi National University, Hanoi, Vietnam.

E-mail address: analgeomatica@gmail.com

