

Circumconics with Asymptotes Making a Given Angle

Francisco Javier García Capitán

Abstract. Given a triangle ABC, we present a construction of the circumhyperbola whose two asymptotes are parallel to the sides of an isosceles triangle on a side of ABC.

Let ABC be a triangle and $0 < \theta < \frac{\pi}{2}$. Call U the point on the perpendicular bisector of BC such that $\angle BUC = 2\theta$ and \mathcal{H}_{ab} the circumhyperbola of ABC with asymptotes parallel to UB and UM.

To construct this hyperbola by five ordinary points, we consider the points D and D' defined as follows:

- Let M be the midpoint BC and S the intersection point of the parallel to BU through C and the parallel to AB through M. Then the line AS intersects the perpendicular bisector of BC at D.
- Let S' be the intersections of the parallel through A to BC and the parallel through C to BU. If the parallel through S' to AB intersects BC at M', then the perpendicular through M' to BC intersects the parallel through A to BC at D'.

Figure 1

Proposition 1. The points D, D' lie on \mathcal{H}_{ab} .

Publication Date: November 19, 2018. Communicating Editor: Paul Yiu.

Proof. We have the coordinates

$$D = \left(a^4 : (S_B - S_C)(S_C - S\tan\theta) : -(S_B - S_C)(S_B + S\tan\theta)\right),$$

$$D' = \left(a^2 : S_B - S_C + S\tan\theta : -S_B + S_C - S\tan\theta\right).$$

On the other hand, the hyperbola \mathcal{H}_{ab} has equation

$$a^{4}yz + S_{C}(S_{C} - S\tan\theta) zx + S_{B}(S_{B} + S\tan\theta) xy = 0.$$

Remark. Proposition 1 can also be proved by using Pascal theorem.

Let A_b the perspector of the hyperbola \mathcal{H}_{ab} , and A_c the perspector of the hyperbola \mathcal{H}_{ac} , defined in a similar way, that is, as the circumhyperbola with asymptotes parallel to UM and UC. Therefore we have the points

$$A_b = \left(a^4 : S_C \left(S_C - S \tan \theta\right) : S_B \left(S_B + S \tan \theta\right)\right),$$

$$A_c = \left(a^4 : S_C \left(S_C + S \tan \theta\right) : S_B \left(S_B - S \tan \theta\right)\right).$$

We also define B_c , B_a and C_a , C_b cyclically.

Proposition 2. The six points A_b , A_c , B_c , B_a , C_a , C_b , lie on a same conic Γ_{θ} , whose equation is

$$\tan^2\theta \cdot (S_A x + S_B y + S_C z)^2 - S^2 \cdot (x^2 + y^2 + z^2 - 2xy - 2xz - 2yz) = 0.$$

Figure 2

Proposition 3. The center O_{θ} of Γ_{θ} lies on the line GK and the following ratio holds:

$$\frac{GO_{\theta}}{O_{\theta}K} = -\frac{S_{\omega}^2 \cdot \sin^2 \theta}{3S^2}$$

where G and K are the centroid and the symmedian point of ABC.

Proposition 4. The conic Γ_{θ} is the locus of perspectors of all circumconics of ABC whose asymptotes make an angle θ .

Now call XYZ the triangle bounded by lines A_bA_c , B_cB_a , C_aA_b . Surprisingly enough, XYZ does not depend on θ . More specifically, we have the following result.

Proposition 5. The line A_bA_c trisects the A-altitude from the vertex and intersects BC at D', the harmonic conjugate of the feet D of the A-altitude with respect to BC. In other words, lines A_bA_c , BC and the sideline of the orthic triangle corresponding to vertex A are concurrent.

Figure 3

Proposition 6. The triangle XYZ is perspective at K.

Figure 4

Proposition 7. The discriminant of Γ_{θ} is given by the formula

$$\Delta(\theta) = 2\left(\left(a^2 - b^2\right)^2 + \left(b^2 - c^2\right)^2 + \left(c^2 - a^2\right)^2\right)\tan^2\theta - 12S^2.$$

The following figure shows a general view: The point U on the perpendicular bisector of BC has been used to construct the circumhyperbola with perspector A_b having asymptotes parallel to UB and perpendicular to BC. Similarly we construct A_c , B_c , B_a , C_a , C_b lying on the conic Γ_{θ} . The conic center O_{θ} of Γ_{θ} lies on line GK.

Now we take a point P on Γ_{θ} and construct the conic (hyperbola) with perspector P. The asymptotes of this hyperbola make an angle θ formed by UB and the perpendicular bisector of BC.

Figure 5

Francisco Javier García Capitán: Departamento de Matemáticas, I.E.S. Alvarez Cubero, Avda. Presidente Alcalá-Zamora, s/n, 14800 Priego de Córdoba, Córdoba, Spain *E-mail address*: garciacapitan@gmail.com