Circumconics with Asymptotes Making a Given Angle

Francisco Javier García Capitán

Abstract

Given a triangle $A B C$, we present a construction of the circumhyperbola whose two asymptotes are parallel to the sides of an isosceles triangle on a side of $A B C$.

Let $A B C$ be a triangle and $0<\theta<\frac{\pi}{2}$. Call U the point on the perpendicular bisector of $B C$ such that $\angle B U C=2 \theta$ and $\mathcal{H}_{a b}$ the circumhyperbola of $A B C$ with asymptotes parallel to $U B$ and $U M$.

To construct this hyperbola by five ordinary points, we consider the points D and D^{\prime} defined as follows:

- Let M be the midpoint $B C$ and S the intersection point of the parallel to $B U$ through C and the parallel to $A B$ through M. Then the line $A S$ intersects the perpendicular bisector of $B C$ at D.
- Let S^{\prime} be the intersections of the parallel through A to $B C$ and the parallel through C to $B U$. If the parallel through S^{\prime} to $A B$ intersects $B C$ at M^{\prime}, then the perpendicular through M^{\prime} to $B C$ intersects the parallel through A to $B C$ at D^{\prime}.

Figure 1

Proposition 1. The points D, D^{\prime} lie on $\mathcal{H}_{a b}$.

[^0]Proof. We have the coordinates

$$
\begin{aligned}
& D=\left(a^{4}:\left(S_{B}-S_{C}\right)\left(S_{C}-S \tan \theta\right):-\left(S_{B}-S_{C}\right)\left(S_{B}+S \tan \theta\right)\right), \\
& D^{\prime}=\left(a^{2}: S_{B}-S_{C}+S \tan \theta:-S_{B}+S_{C}-S \tan \theta\right) .
\end{aligned}
$$

On the other hand, the hyperbola $\mathcal{H}_{a b}$ has equation

$$
a^{4} y z+S_{C}\left(S_{C}-S \tan \theta\right) z x+S_{B}\left(S_{B}+S \tan \theta\right) x y=0 .
$$

Remark. Proposition 1 can also be proved by using Pascal theorem.
Let A_{b} the perspector of the hyperbola $\mathcal{H}_{a b}$, and A_{c} the perspector of the hyperbola $\mathcal{H}_{a c}$, defined in a similar way, that is, as the circumhyperbola with asymptotes parallel to $U M$ and $U C$. Therefore we have the points

$$
\begin{aligned}
& A_{b}=\left(a^{4}: S_{C}\left(S_{C}-S \tan \theta\right): S_{B}\left(S_{B}+S \tan \theta\right)\right), \\
& A_{c}=\left(a^{4}: S_{C}\left(S_{C}+S \tan \theta\right): S_{B}\left(S_{B}-S \tan \theta\right)\right) .
\end{aligned}
$$

We also define B_{c}, B_{a} and C_{a}, C_{b} cyclically.
Proposition 2. The six points $A_{b}, A_{c}, B_{c}, B_{a}, C_{a}, C_{b}$, lie on a same conic Γ_{θ}, whose equation is

$$
\tan ^{2} \theta \cdot\left(S_{A} x+S_{B} y+S_{C} z\right)^{2}-S^{2} \cdot\left(x^{2}+y^{2}+z^{2}-2 x y-2 x z-2 y z\right)=0
$$

Figure 2

Proposition 3. The center O_{θ} of Γ_{θ} lies on the line $G K$ and the following ratio holds:

$$
\frac{G O_{\theta}}{O_{\theta} K}=-\frac{S_{\omega}^{2} \cdot \sin ^{2} \theta}{3 S^{2}}
$$

where G and K are the centroid and the symmedian point of $A B C$.

Proposition 4. The conic Γ_{θ} is the locus of perspectors of all circumconics of $A B C$ whose asymptotes make an angle θ.

Now call $X Y Z$ the triangle bounded by lines $A_{b} A_{c}, B_{c} B_{a}, C_{a} A_{b}$. Surprisingly enough, $X Y Z$ does not depend on θ. More specifically, we have the following result.

Proposition 5. The line $A_{b} A_{c}$ trisects the A-altitude from the vertex and intersects $B C$ at D^{\prime}, the harmonic conjugate of the feet D of the A-altitude with respect to $B C$. In other words, lines $A_{b} A_{c}, B C$ and the sideline of the orthic triangle corresponding to vertex A are concurrent.

Figure 3

Proposition 6. The triangle $X Y Z$ is perspective at K.

Figure 4

Proposition 7. The discriminant of Γ_{θ} is given by the formula

$$
\Delta(\theta)=2\left(\left(a^{2}-b^{2}\right)^{2}+\left(b^{2}-c^{2}\right)^{2}+\left(c^{2}-a^{2}\right)^{2}\right) \tan ^{2} \theta-12 S^{2}
$$

The following figure shows a general view: The point U on the perpendicular bisector of $B C$ has been used to construct the circumhyperbola with perspector A_{b} having asymptotes parallel to $U B$ and perpendicular to $B C$. Similarly we construct $A_{c}, B_{c}, B_{a}, C_{a}, C_{b}$ lying on the conic Γ_{θ}. The conic center O_{θ} of Γ_{θ} lies on line $G K$.

Now we take a point P on Γ_{θ} and construct the conic (hyperbola) with perspector P. The asymptotes of this hyperbola make an angle θ formed by $U B$ and the perpendicular bisector of $B C$.

Figure 5

Francisco Javier García Capitán: Departamento de Matemáticas, I.E.S. Alvarez Cubero, Avda. Presidente Alcalá-Zamora, s/n, 14800 Priego de Córdoba, Córdoba, Spain

E-mail address: garciacapitan@gmail.com

[^0]: Publication Date: November 19, 2018. Communicating Editor: Paul Yiu.

