Forum Geometricorum
Volume 18 (2018)

Join yahoo discussion group Advanced Plane Geometry
to receive FG publication announcements.

Return to Forum Geometricorum Home Page

42. Francisco Javier Garcia Capitan, Circumconics with Asymptotes Making a Given Angle, 367—370.

41. Roger C. Alperin, Pedals of the Poncelet pencil and Fontené points, 361--365.

40. Nikolaos Dergiades and Tran Quang Hung, Simple proofs of Feuerbach's Theorem and Emelyanov's Theorem, 353--359.

39. Floor van Lamoen, Orthopoles and variable flanks, 349--351.

38. Paris Pamfilos, Self-pivoting convex  quadrangles, 321--347.

 37. Şahlar Meherrem, Gizem Günel Açıksöz, Serenay Şen, Zeynep   Sezer, and Güneş Başkes, Geometric inequalities in pedal quadrilaterals, 309-320.

 36. Floor van Lamoen, A synthetic proof of the equality of iterated Kiepert triangles K(ϕ, ψ) = K( ψ, ϕ), 307-308.

 35. Omid Ali Shahni Karamzadeh, Is the mystery of Morley's trisector theorem resolved? 297-306.

 34. John Donnelly, A model of nowhere geodesic plane geometry in which the triangle inequality fails everywhere, 275-296.

 33. John Donnelly, A model of continuous plane geometry that is nowhere geodesic, 255-273.

 32. Robert Bosch, A new proof of Pitot theorem by AM-GM inequality, 251-253.

 31. Martina Stepanova, New constructions of triangle from α, b-c, t_A,

 245-250.

 30. Tran Quang Hung, A construction of the golden ratio in an arbitrary triangle, 239-244.

 29. Blas Herrera, Algebraic equations of all involucre conics in the configuration of the c-inscribed equilateral triangles of a triangle,

 223-238.

 28. Mohammad K. Azarian, “A Study of Risāla al-Watar wa’l Jaib” (The Treatise on the Chord and Sine): Revisited, 219-222.

 27. Nikolaos Dergiades, Parallelograms inscribed in convex quadrangles, 203-218.

 26. Purevsuren Damba and Uuganbaatar Ninjbat,  Side Disks of a spherical great polygon,  195-201.

 25. Mihály Bencze and Marius Drăgan, The Blundon theorem in an Acute Triangle and Some Consequences, 185-194.

 24. Paris Pamfilos, Rectangles circumscribing a quadrangle, 161-184.

23. Hiroshi Okumura and Saburou Saitoh, Harmonic mean and division by zero, 155-159.

22. Mark Shattuck, A geometric inequality for cyclic quadrilaterals, 141-154.

21. Eugen J. Ionaşcu, The ``circle" of Apollonius in Hyperbolic Geometry, 135-140.

20. Michel Bataille, Constructing a triangle from two vertices and the symmedian point, 129-133.

19. Nicholas D. Brubaker, Jasmine Camero, Oscar Rocha Rocha, Roberto Soto, and Bogdan D. Suceavă, A curvature invariant inspired by Leonhard Euler's inequality R ≥ 2r, 119-127.

18. Gábor Gévay, An extension of Miquel's six-circles theorem, 115-118.
17. (Retracted) Sándor Nagydobai Kiss, On the cyclic quadrilaterals with the same Varignon parallelogram, 103-113.

16. Hiroshi Okumura and Saburou Saitoh, Remarks for the twin circles of Archimedes in a skewed arbelos, 99-102.

15. Gerasimos T. Soldatos, A toroidal approach to the doubling of the cube, 93-97.

14. Paris Pamfilos, Parabola conjugate to rectangular hyperbola, 87-92.
13. Robert Bosch, A new proof of Erdős-Mordell inequality, 83-86.

12. Francisco Javier Garcıa Capitán, A family of triangles for which two specific triangle centers have the same coordinates, 79-82.

11. Li Zhou, Primitive Heronian triangles with integer inradius and exradii, 71-77.

10. Apostolos Hadjidimos, Twins of Hofstadter elements, 63-70.

9. Michel Bataille, On the extrema of some distance ratios, 57-62.

8. Giovanni Lucca, Integer sequences and circle chains inside a circular segment, 47-55.

7. Lubomir P. Markov, Revisiting the infinite surface area of Gabriel's horn, 45-46.

6. Hiroshi Okumura, A remark on the arbelos and the regular star polygon, 43-44.

5. Manfred Pietsch, Two hinged regular n-sided polygons, 39-42.

4. Samuel G. Moreno and Esther M. Garcıa--Caballero, Irrationality of √2: Yet another visual proof, 37-38.

3. C. E. Garza-Hume, Maricarmen C. Jorge, and Arturo Olvera, Areas and shapes of planar irregular polygons, 17-36.

2. Carl Eberhart, Revisiting the quadrisection problem of Jacob Bernoulli, 7-16.

1. Stefan Liebscher and Dierck-E. Liebscher, The relativity of conics and circles, 1-6.