** Warm, Hartmut
**
** The golden section in a planar quasi twelve-point star, 16 (2016) 95--98. **

**
**** Watanabe, Masayuki
**
** (with H. Okumura) The Archimedean circles of Schoch and Woo, 4 (2004) 27--34. **

** (with H. Okumura) The twin circles of Archimedes in a skewed arbelos, 4 (2004) 229--251. **

** (with H. Okumura) The arbelos in $n$-aliquot parts, 5 (2005) 37--45. **

** (with H. Okumura) A generalization of Power's Archimedean circles, 6 (2006) 103--105. **

** (with H. Okumura) Characterizations of an infinite set of Archimedean circles, 7 (2007) 121--123. **

** (with H. Okumura) Remarks on Woo's Archimedean circles, 7 (2007) 125--128. **

**
**** Weise, Gotthard
**
**Iterates of Brocardian points and lines, 10 (2010) 109--118. **

**Generalization and extension of the Wallace theorem, 12 (2012) 1--11. **

**On some triads of homothetic triangles, 14 (2014) 203--215.**

**Pairs of cocentroidal inscribed and circumscribed triangles, 15 (2015) 185--190.**

**Cevian projections of inscribed triangles and generalized Wallace lines, 16 (2016) 241--248.**

**
**** Wimmer, Harald K
**
** (with N. Ito) A sangaku-type problem with regular polygons, triangles, and congruent incircles, 13 (2013) 185--190.**

**
**** Wipper, Joachim
**
** (with D. Vartziotis) On the construction of regular polygons and generalized Napoleon vertices, 9 (2009) 213--223. **

**
**** Wolk, Barry
**
** (with A. P. Hatzipolakis, F. M. van Lamoen, and P. Yiu) Concurrency of four Euler lines, 1 (2001) 59--68. **

**
**** Woo, Peter
**
**Simple constructions of the incircle of an arbelos, 1 (2001) 133--136. **

** (with A. Myakishev) On the circumcenters of cevasix configurations, 3 (2003) 57--63. **

**
**** Wu, Chai Wah
**
**Counting the number of isosceles triangles in rectangular regular grids, 17 (2017) 31--39. **

**
**** Wu, Yu-Dong
**
** (with Z. H. Zhang) The edge-tangent sphere of a circumscriptible tetrahedron, 7 (2007) 19--24. **

**A new proof of a weighted Erdos-Mordell type inequality, 8 (2008) 163--166. **

**
**

**
****
** **
**