2003 Putnam A5.

Solution. Let D_{n} be the set of Dyck n-paths, A_{n} be the subset of D_{n} with no return of even length, $B_{n}=D_{n}-A_{n}$, and C_{n} be the subset of B_{n} with an even return at the very end (i.e., a return of even length to $(2 n, 0)$). We use lower-case letters to mean the cardinality of its corresponding set in upper-case letters.
Firstly, $B_{n}=\cup_{k=1}^{n} B_{n}(k)$, where $B_{n}(k)$ is the subset of B_{n} with last return of even length at $(2 k, 0)$. Then $b_{n}(k)=c_{k} a_{n-k}$ for each k. Thus $b_{n}=\sum_{k=1}^{n} c_{k} a_{n-k}$, where $a_{0}=1$. Next, $A_{n+1}=\cup_{k=0}^{n} A_{n+1}(k)$, where $A_{n+1}(k)$ is the subset of A_{n+1} that dip back (with returns of odd lengths, of course) to the x-axis for the first time at $(2 k+2,0)$. Note that before returning to the x-axis, each path in $A_{n+1}(k)$ must stayed or above the level of $y=1$ and hit $(2 k+1,1)$ with a return of even length. Thus $a_{n+1}(k)=c_{k} a_{n-k}$. Hence $a_{n+1}=\sum_{k=0}^{n} c_{k} a_{n-k}$, where $c_{0}=1$.
Comparing the sums of b_{n} and a_{n+1}, we see that $a_{n+1}=a_{n}+b_{n}=d_{n}$.

