2003 Putnam A5.

Solution. Let D_n be the set of Dyck *n*-paths, A_n be the subset of D_n with no return of even length, $B_n = D_n - A_n$, and C_n be the subset of B_n with an even return at the very end (i.e., a return of even length to (2n, 0)). We use lower-case letters to mean the cardinality of its corresponding set in upper-case letters.

Firstly, $B_n = \bigcup_{k=1}^n B_n(k)$, where $B_n(k)$ is the subset of B_n with last return of even

length at
$$(2k, 0)$$
. Then $b_n(k) = c_k a_{n-k}$ for each k. Thus $b_n = \sum_{k=1}^n c_k a_{n-k}$, where $a_0 = 1$.

Next, $A_{n+1} = \bigcup_{k=0}^{n} A_{n+1}(k)$, where $A_{n+1}(k)$ is the subset of A_{n+1} that dip back (with returns of odd lengths, of course) to the x-axis for the first time at (2k + 2, 0). Note that before returning to the x-axis, each path in $A_{n+1}(k)$ must stayed or above the level of y = 1 and hit (2k + 1, 1) with a return of even length. Thus $a_{n+1}(k) = c_k a_{n-k}$. Hence $a_{n+1} = \sum_{k=0}^{n} c_k a_{n-k}$, where $c_0 = 1$.

Comparing the sums of b_n and a_{n+1} , we see that $a_{n+1} = a_n + b_n = d_n$.