Putnam 2002

A1. It is easy to prove by induction that

$$
P_{n}(x)=(-1)^{n} n!k^{n} x^{n(k-1)}+Q_{n}(x)
$$

where $Q_{n}(1)=0$. It follows that

$$
P_{n}(1)=(-1)^{n} n!k^{n}
$$

A2. Either this is unusually trivial or I am missing something. Two of the points can be put on a great circle determining two hemispheres. One of these closed hemispheres must contain at least four of the points.

A3. We fix $n \geq 2$ (for a while) and if $\emptyset \neq S \subset 1,2, \ldots, n$ we set

$$
A(S)=\frac{1}{|S|} \sum_{k \in S}
$$

where $|S|=$ cardinality of S. We have to prove: If

$$
\mathcal{T}_{n}=\{S \subset 1,2, \ldots, n: S \neq \emptyset, A(S) \text { is an integer }\}
$$

then $\left|\mathcal{T}_{n}\right|-n$ is even.
If is a subset of $\{1, \ldots, n\}$, let $S^{\prime}=\{n-x+1: x \in S\}$ and observe that

$$
A(s)+A\left(S^{\prime}\right)=n+1
$$

for all non-empty S. It is thus clear that the map $S \mapsto S^{\prime}$, which preserves the cardinality of sets, is a bijection of \mathcal{T}_{n} onto itself. We partition $\mathcal{T}_{n}=\mathcal{A} \cup \mathcal{B}$ where $\mathcal{A}=\left\{S \in \mathcal{T}_{n}: S=S^{\prime}\right\}, B=\mathcal{T}_{n} \backslash \mathcal{A}$. Let $a=|\mathcal{A}|, b=|\mathcal{B}|$, so that $T_{n}=a+b$. It is clear that b is even since the map $S \mapsto S^{\prime}$ is an involution without fixed points of \mathcal{B} onto itself.

Assume now that n is even. Then $S=S^{\prime}$ implies $2 A(S)=A(S)+A\left(S^{\prime}\right)=$ $n+1$, thus $A(S)=(n+1) / 2$, which is not an integer. It follows that \mathcal{A} is empty, and $T_{n}=b$ is even. On the other hand, if n is odd, the same calculation shows that every non-empty S such that $S^{\prime}=S$ is in \mathcal{A}. A bit of reflection shows that $S=S^{\prime} \neq \emptyset($ for odd $n)$ if and only if it has one of the two following forms:
i. $S=A \cup\{(n+1) / 2\} \cup\{n-x+1: x \in A$ for some subset A of $\{1, \ldots,(n+1) / 2\}$, i. $S=A \cup\{n-x+1: x \in A$ for some non-empty subset A of $\{1, \ldots,(n+1) / 2\}$.

It follows that

$$
a=|\mathcal{A}|=2^{(n+1) / 2}+2^{(n+1) / 2}-1
$$

is odd, hence $T_{n}=a+b$ is also odd.

A4. I believe that I have a very involved proof that Player 0 always wins. If I am wrong, better not write it out. If right, it has too many cases.

A5. We prove by induction on the positive integer m : For every decomposition $m=a+b$ and a, b are positive integers relatively prime with respect to m, there exists a positive integer n such that $a_{n}=a, a_{n+1}=m$, and $a_{n+2}=b$. The case $m=1$ is vacuously true, the case $m=2$ is verified for $n=2$. Assume the statement proved for all positive integers less than some integer m and assume $m=a+b$, where a, b are relatively prime with respect to m. Then a, b are also relatively prime with respect to each other. Assume first $a<b$. By the induction hypothesis, there exists k such that $a_{k}=a, a_{k+1}=b$ and $a_{k+2}=b-a$. It follows that $a_{2 k+1}=a, a_{2 k+2}=m$ and $a_{2 k+3}=b$. If $b<a$, then the induction hypothesis provides k such that $a_{k}=a-b, a_{k+1}=a, a_{k+2}=b$. Then $a_{2 k+3}=a$, $a_{2 k+4}=m, a_{2 k+5}=b$. The inductive proof is complete.

The result is now clear. If x is rational and $x<1$, we can write $x=a / m$ with a, m relatively prime. There is then n with $a_{n}=a, a_{n+1}=m$ so that $x=a_{n} / a_{n+1}$. If $x>1$, we use the fact that we can write $x=b / m$ with m, b relatively prime. Finally, of course, $1=a_{0} / a_{1}$.

A6. The series converges if and only if $b=2$.

For convenience we write

$$
a_{\ell}=\sum_{k=b^{\ell-1}}^{b^{\ell}-1} \frac{1}{k}
$$

and we notice that

$$
\log b \leq a_{\ell} \leq \log b+(b-1) b^{-\ell}
$$

for $\ell=1,2, \ldots$, where $\log b$ is the natural logarithm of b.
Assume first $b>2$. Let $n_{1}=1$ and $n_{r}=b^{n_{r-1}}$ if $r \geq 2$. Then, setting

$$
S_{r}=\sum_{k=1}^{n_{r}-1} \frac{1}{f(k)}
$$

we see that

$$
\begin{aligned}
S_{r+1} & =\sum_{k=1}^{b^{n_{r}}-1} \frac{1}{f(k)}=\sum_{\ell=1}^{n_{r}} \sum_{k=b^{\ell-1}}^{b^{\ell}-1} \frac{1}{f(k)} \\
& =\sum_{\ell=1}^{n_{r}} \frac{1}{f(\ell)} a_{\ell} \geq \log b \sum_{\ell=1}^{n_{r}} \frac{1}{f(\ell)} \geq(\log b) S_{r}
\end{aligned}
$$

By induction, $S_{r} \geq(\log b)^{r} S_{1}=(\log b)^{r}$, proving the series diverges since $\log b>$ 1 for $b>2$; i.e., for $b \geq 3$.

Assume now that $b=2$ and let n be a positive integer. Select the positive integer r so that $2^{r-1} \leq n<2^{r}$. Setting this time

$$
S_{n}=\sum_{k=1}^{n} \frac{1}{f(k)}
$$

we see that

$$
\begin{aligned}
S_{n} & \leq \sum_{k=1}^{2^{r}-1} \frac{1}{f(k)}=\sum_{\ell=1}^{r} \sum_{k=2^{\ell-1}}^{2^{\ell}-1} \frac{1}{f(k)} \\
& =\sum_{\ell=1}^{r} \frac{1}{f(\ell)} a_{\ell} \leq \sum_{\ell=1}^{r} \frac{1}{f(\ell)}\left(\log 2+2^{-\ell}\right)
\end{aligned}
$$

Since $r \leq n$ and $1 / f(\ell) \leq 1$, we estimate

$$
\sum_{\ell=1}^{r} \frac{1}{f(\ell)}\left(\log 2+2^{-\ell}\right) \leq(\log 2) S_{n}+\sum_{\ell=1}^{\infty} 2^{-\ell}=(\log 2) S_{n}+2
$$

We proved $S_{n} \leq(\log 2) S_{n}+2$; since $\log 2<1$ this proves $S_{n} \leq 2 /(1-\log 2)$ for all positive integers n. Convergence follows.

