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A1. It is easy to prove by induction that

Pn(x) = (−1)nn!knxn(k−1) + Qn(x)

where Qn(1) = 0. It follows that

Pn(1) = (−1)nn!kn

A2. Either this is unusually trivial or I am missing something. Two of the
points can be put on a great circle determining two hemispheres. One of these
closed hemispheres must contain at least four of the points.

A3. We fix n ≥ 2 (for a while) and if ∅ �= S ⊂ 1, 2, . . . , n we set

A(S) =
1
|S|

∑

k∈S

where |S| = cardinality of S. We have to prove: If

Tn = {S ⊂ 1, 2, . . . , n : S �= ∅, A(S) is an integer},

then |Tn| − n is even.
If is a subset of {1, . . . , n}, let S′ = {n − x + 1 : x ∈ S} and observe that

A(s) + A(S′) = n + 1

for all non-empty S. It is thus clear that the map S �→ S′,which preserves the
cardinality of sets, is a bijection of Tn onto itself. We partition Tn = A ∪ B
where A = {S ∈ Tn : S = S′}, B = Tn\A. Let a = |A|, b = |B|, so that
Tn = a + b. It is clear that b is even since the map S �→ S′ is an involution
without fixed points of B onto itself.

Assume now that n is even. Then S = S′ implies 2A(S) = A(S) + A(S′) =
n+1, thus A(S) = (n+1)/2, which is not an integer. It follows that A is empty,
and Tn = b is even. On the other hand, if n is odd, the same calculation shows
that every non-empty S such that S′ = S is in A. A bit of reflection shows that
S = S′ �= ∅ (for odd n) if and only if it has one of the two following forms:
i. S = A∪{(n+1)/2}∪{n−x+1 : x ∈ A for some subset A of {1, . . . , (n+1)/2},
i. S = A∪{n−x+1 : x ∈ A for some non-empty subset A of {1, . . . , (n+1)/2}.

It follows that
a = |A| = 2(n+1)/2 + 2(n+1)/2 − 1

is odd, hence Tn = a + b is also odd.

A4. I believe that I have a very involved proof that Player 0 always wins. If I
am wrong, better not write it out. If right, it has too many cases.
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A5. We prove by induction on the positive integer m: For every decomposition
m = a+b and a, b are positive integers relatively prime with respect to m, there
exists a positive integer n such that an = a, an+1 = m, and an+2 = b. The
case m = 1 is vacuously true, the case m = 2 is verified for n = 2. Assume the
statement proved for all positive integers less than some integer m and assume
m = a + b, where a, b are relatively prime with respect to m. Then a, b are
also relatively prime with respect to each other. Assume first a < b. By the
induction hypothesis, there exists k such that ak = a, ak+1 = b and ak+2 = b−a.
It follows that a2k+1 = a, a2k+2 = m and a2k+3 = b. If b < a, then the induction
hypothesis provides k such that ak = a−b, ak+1 = a, ak+2 = b. Then a2k+3 = a,
a2k+4 = m, a2k+5 = b. The inductive proof is complete.

The result is now clear. If x is rational and x < 1, we can write x = a/m
with a, m relatively prime. There is then n with an = a, an+1 = m so that
x = an/an+1. If x > 1, we use the fact that we can write x = b/m with m, b
relatively prime. Finally, of course, 1 = a0/a1.

A6. The series converges if and only if b = 2.
For convenience we write

a� =
b�−1∑

k=b�−1

1
k

and we notice that
log b ≤ a� ≤ log b + (b − 1)b−�

for � = 1, 2, . . ., where log b is the natural logarithm of b.
Assume first b > 2. Let n1 = 1 and nr = bnr−1 if r ≥ 2. Then, setting

Sr =
nr−1∑

k=1

1
f(k)

we see that

Sr+1 =
bnr−1∑

k=1

1
f(k)

=
nr∑

�=1

b�−1∑

k=b�−1

1
f(k)

=
nr∑

�=1

1
f(�)

a� ≥ log b

nr∑

�=1

1
f(�)

≥ (log b)Sr.

By induction, Sr ≥ (log b)rS1 = (log b)r, proving the series diverges since log b >
1 for b > 2; i.e., for b ≥ 3.

Assume now that b = 2 and let n be a positive integer. Select the positive
integer r so that 2r−1 ≤ n < 2r. Setting this time

Sn =
n∑

k=1

1
f(k)

,
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we see that

Sn ≤
2r−1∑

k=1

1
f(k)

=
r∑

�=1

2�−1∑

k=2�−1

1
f(k)

=
r∑

�=1

1
f(�)

a� ≤
r∑

�=1

1
f(�)

(log 2 + 2−�).

Since r ≤ n and 1/f(�) ≤ 1, we estimate

r∑

�=1

1
f(�)

(log 2 + 2−�) ≤ (log 2)Sn +
∞∑

�=1

2−� = (log 2)Sn + 2.

We proved Sn ≤ (log 2)Sn + 2; since log 2 < 1 this proves Sn ≤ 2/(1− log 2) for
all positive integers n. Convergence follows.
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