Problem A1 Let n be a positive integer. How many ways are there to write n

as a sum of positive integers,

$$n = a_1 + a_2 + \dots + a_k,$$

with k an arbitrary positive integer and $a_1 \leq a_2 \leq \cdots \leq a_k \leq a_{k+1}$?

Solution There are *n* ways. It suffices to show that if *k* is an integer, $1 \le k \le n$, there is exactly one way to write *n* as a sum of *k* integers of the specified type. By the quotient algorithm, n = kq + r for some $r, 0 \le r \le k - 1$. If r = 0, we can take $a_1 = a_2 = \cdots = a_k = q$ and write $n = a_1 + \cdots + a_k$. If $0 < r \le k - 1$, we can take $a_1 = \cdots = a_{k-r} = q$, $a_{k-r+1} = \cdots = a_k = q + 1$ to get $a_1 + \cdots + a_k = (k - r)q + r(q + 1) = n$. This shows there is at least one way to decompose *n* as specified for each *k*. To see this is the only such way, notice that if $n = a_1 + a_2 + \cdots + a_k$ with $a_1 \le a_2 \le \cdots a_k \le a_{k+1} \le a_1 + 1$, then we either have $a_1 = a_2 = \cdots = a_k$ or there is ℓ , $1 < \ell < k$ such that $a_1 = a_2 = \cdots = a_\ell < a_{\ell+1} = \cdots = a_k = a_1 + 1$. In the former case $n = ka_1$, so that we are in the case r = 0, $q = a_1$, and the decomposition is the one given for that case. In the latter,

$$n = \ell a_1 + (k - \ell)(a_1 + 1) = ka_1 + (\ell - k)$$

so that we are in the case $r = k - \ell > 0$, and the decomposition coincides with the previous one. This proves the uniqueness of the decomposition for each k.