Problem A1 Let n be a positive integer. How many ways are there to write n
as a sum of positive integers,

$$
n=a_{1}+a_{2}+\cdots+a_{k},
$$

with k an arbitrary positive integer and $a_{1} \leq a_{2} \leq \cdots a_{k} \leq a_{k+1}$?
Solution There are n ways. It suffices to show that if k is an integer, $1 \leq k \leq n$, there is exactly one way to write n as a sum of k integers of the specified type. By the quotient algorithm, $n=k q+r$ for some $r, 0 \leq r \leq k-1$. If $r=0$, we can take $a_{1}=a_{2}=\cdots=a_{k}=q$ and write $n=a_{1}+\cdots+a_{k}$. If $0<r \leq k-1$, we can take $a_{1}=\cdots=a_{k-r}=q, a_{k-r+1}=\cdots=a_{k}=q+1$ to get $a_{1}+\cdots+a_{k}=(k-r) q+r(q+1)=n$. This shows there is at least one way to decompose n as specified for each k. To see this is the only such way, notice that if $n=a_{1}+a_{2}+\cdots+a_{k}$ with $a_{1} \leq a_{2} \leq \cdots a_{k} \leq a_{k+1} \leq a_{1}+1$, then we either have $a_{1}=a_{2}=\cdots=a_{k}$ or there is $\ell, 1<\ell<k$ such that $a_{1}=a_{2}=\cdots=a_{\ell}<a_{\ell+1}=\cdots=a_{k}=a_{1}+1$. In the former case $n=k a_{1}$, so that we are in the case $r=0, q=a_{1}$, and the decomposition is the one given for that case. In the latter,

$$
n=\ell a_{1}+(k-\ell)\left(a_{1}+1\right)=k a_{1}+(\ell-k)
$$

so that we are in the case $r=k-\ell>0$, and the decompostion coincides with the previous one. This proves the uniqueness of the decomposition for each k.

