$\underline{\text { Problem A4 }}$ Suppose that a, b, c, A, B, C are real numbers , $a \neq 0, A \neq 0$,
such that

$$
\left|a x^{2}+b x^{2}+c\right| \leq\left|A x^{2}+B x^{2}+C\right|
$$

for all real numbers x. Show that

$$
\left|b^{2}-4 a c\right| \leq\left|B^{2}-4 A C\right|
$$

Solution Dividing by x and letting $x \rightarrow \infty$, we see that $|a| \leq|A|$.
We consider three cases. Case 1. $B^{2}-4 A C>0$. Then the equation $A x^{2}+B x+C=0$ has two distinct roots. It follows that these must also be roots of the equation $a x^{2}+b x+c=0$, and the differences of the two roots of the first equation must coincide with the difference of the roots of the second. That is,

$$
\frac{\sqrt{B^{2}-4 A C}}{A}=\frac{\sqrt{b^{2}-4 a c}}{a}
$$

hence

$$
\sqrt{B^{2}-4 A C}=\frac{A}{a} \sqrt{b^{2}-4 a c} \geq \sqrt{b^{2}-4 a c}
$$

and the desired inequality follows.
Case 2. $B^{2}-4 A C=0$ so that $A x^{2}+B x+C=0$ has a double root at $-B / 2 A$. The assumed inequality implies that

$$
\limsup _{x \rightarrow A} \frac{\left|a x^{2}+b x+c\right|}{\left(x+\frac{b}{2 A}\right)^{2}}<\infty
$$

implying that $a x^{2}+b x+c=0$ also has a double root at $-B / 2 A$. Thus $-B / 2 A=$ $-b / 2 a$ and in this case we have $b^{2}-4 a c=0=B^{2}-4 A C$.

Case 3. $B^{2}-4 A C<0$. The equation $A x^{2}+B x+C=0$ has no real roots. Assume $A>0$, the case $A<0$ is similar. In this case it is geometrically clear (and easy to prove analytically) that the y - coordinate of the vertex of the parabola $y=A x^{2}+B x+C$ must be larger than the y coordinates of the vertices of the parabolas of equations $y= \pm\left(a x^{2}+b x+c\right)$; i.e.,

$$
\frac{4 A C-B^{2}}{4 A} \geq \frac{\left|4 a c-b^{2}\right|}{4|a|}
$$

hence

$$
4 A C-B^{2} \geq \frac{A}{|a|}\left|4 a c-b^{2}\right| \geq\left|4 a c-b^{2}\right|
$$

The inequality has been proved in all cases.

