$\underline{\text { Problem B2 }}$ Let n be a positive integer. Starting with the sequence $1, \frac{1}{2}, \ldots, \frac{1}{n}$,
form a new sequence of $n-1$ entries $\frac{3}{4}, \frac{5}{12}, \ldots, \frac{2 n-1}{2 n(n-1)}$, by taking the averages of two consecutive entries in the first sequence. Repeat the averaging of neighbors on the second sequence to obtain a third sequence of $n-2$ entries and continue until the final sequence consists of a single number x_{n}. Show that $x_{n}<2 / n$.
Solution By induction on n one sees that

$$
x_{n}=\frac{1}{2^{n-1}} \sum_{k=0}^{n-1}\binom{n-1}{k} \frac{1}{k+1}=\frac{1}{2^{n-1}} \frac{2^{n}-1}{n}<\frac{2}{n} .
$$

