It is perhaps easier to consider the cards as being in a fixed order and the counting to be a randomization of the given sequence (18 ones, 17 twos, 17 threes).

The number of sequences is $\frac{52!}{18!17!17!}=99,579,591,790,845,629,463,000$.
Suppose that i ones, j twos and k threes are in specified positions with the same labels (forbidden positions).

The number of such sequences is $P(i, j, k)=\binom{4}{i}\binom{4}{j}\binom{4}{k} \frac{(52-i-j-k)!}{(18-i)!(17-j)!(17-k)!}$.
By the principle of inclusion-exclusion, the number of winning sequences is

$$
\begin{aligned}
& \sum_{i=0}^{4} \sum_{j=0}^{4} \sum_{k=0}^{4}\binom{4}{i}\binom{4}{j}\binom{4}{k} \frac{(52-i-j-k)!}{(18-i)!(17-j)!(17-k)!}(-1)^{i+j+k} \\
= & 813,069,712,393,655,972,160,
\end{aligned}
$$

and the probability of winning is

$$
\begin{aligned}
& \left(\frac{52!}{18!17!17!}\right)^{-1} \sum_{i=0}^{4} \sum_{j=0}^{4} \sum_{k=0}^{4}\binom{4}{i}\binom{4}{j}\binom{4}{k} \frac{(52-i-j-k)!}{(18-i)!(17-j)!(17-k)!}(-1)^{i+j+k} \\
= & \frac{24,532,967,512}{3,004,641,364,725} \approx 0.008165
\end{aligned}
$$

