Exercice 1 Six points are chosen on the sides of an equilateral triangle $A B C: A_{1}, A_{2}$ on $B C$,
B_{1}, B_{2} on $C A$ and C_{1}, C_{2} on $A B$, such that they are the vertices of a convex hexagon $A_{1} A_{2} B_{1} B_{2} C_{1} C_{2}$ with equal side lengths. Prove that the lines $A_{1} B_{2}, B_{1} C_{2}$ et $C_{1} A_{2}$ are concurrent.

Exercice 2 Let a_{1}, a_{2}, \ldots be a sequence of integers with infinitely many positive and negative terms. Suppose that for every positive integer n, the numbers $a_{1}, a_{2}, \ldots, a_{n}$ leave n different remainders upon division by n. Prove that every integer occurs exactly once in the sequence a_{1}, a_{2}, \ldots

Exercice 3 Let x, y, z be three positive reals such that $x y z \geq 1$. Prove that

$$
\frac{x^{5}-x^{2}}{x^{5}+y^{2}+z^{2}}+\frac{y^{5}-y^{2}}{y^{5}+z^{2}+x^{2}}+\frac{z^{5}-z^{2}}{z^{5}+x^{2}+y^{2}} \geq 0 .
$$

Exercice 4 Determine all positive integers relatively prime to all the terms of the infinite sequence $a_{n}=2^{n}+3^{n}+6^{n}-1, n \geq 1$.

Exercice 5 Let $A B C D$ be a fixed convex quadrilateral with $B C=D A$ and $B C$ not parallel with $D A$. Let two variable points E and F lie on the sides $B C$ and $D A$ respectively and satisfy $B E=D F$. The lines $A C$ and $B D$ meet at P, the lines $B D$ and $E F$ meet at Q, the lines $E F$ and $A C$ meet at R. Prove that the circumcircles of the triangles $P Q R$, as E and F vary, have a common point other than P.

Exercice 6 In a mathematical competition in which 6 problems were posed to the participants, every two of these problems were solved by more than $\frac{2}{5}$ of the contestants. Moreover, no contestant solved all the 6 problems. Show that there is at least 2 contestants who solved exactly 5 problems each.

