Solution 1: We have \(\frac{A_1A_2}{BC} + \frac{B_1B_2}{BA} + \frac{C_1C_2}{CA} = 0 \), hence \(A_2B_1 + B_2C_1 + C_2A_1 = 0 \).

So, if \(A' \) or \(B' \) or \(C' \) is the common point of the lines \(A_2B_1 \) and \(C_2A_1 \) or \(B_2C_1 \) and \(A_2B_1 \), or \(C_2A_1 \) and \(B_2C_1 \), the triangle \(A'B'C' \) is equilateral.

The triangles \(AC_1B_2 \) and \(BA_1C_2 \) are congruent, because each of them is congruent with \(C'1C_2 \); the isometry mapping \(AC_1B_2 \) to \(BA_1C_2 \) is clearly the rotation with center \(O \) and angle \(2\pi / 3 \), where \(O \) is the center of the triangle \(ABC \). Same way, the rotation \((O, -2\pi / 3) \) maps the triangle \(AC_1B_2 \) to \(CB_1A_2 \).

Hence the triangle \(A_1B_1C_1 \) is equilateral with center \(O \) and the lines \(A_1B_2, B_1C_2 \), and \(C_1A_2 \) are the perpendicular bisectors of the sides of \(A_1B_1C_1 \); it follows that these three lines concur at \(O \).

Solution 2: If \(a_m = a_n \) with \(m < n \), we have \(a_m = a_n \) \([n + 1] \) which is impossible. Hence, the \(a_n \) for \(n \in \mathbb{Z} \), are distinct.

If \(a_n = \min(a_1, a_2, ..., a_n) \) and \(\beta_n = \max(a_1, a_2, ..., a_n) \), as \(a_n = \beta_n - a_n \), we have \(\beta_n - a_n < n \) and, \(a_1, a_2, ..., a_n \) being distinct, \{\(a_1, a_2, ..., a_n \}\} is a set of \(n \) consecutive integers.

As \{\(a_n \mid n \in \mathbb{Z} \}\} has infinitely many positive and negative elements, it follows that \(\{a_n \mid n \in \mathbb{Z}\} = \mathbb{Z} \).

Solution 3: We have

\[
\left[(x^2 + y^2 + z^2)x^3 - (x^3 + y^2 + z^2)\right] \left(x^2 - \frac{1}{x}\right) = \frac{(y^2 + z^2)(x^3 - 1)^2}{x} \geq 0
\]

Hence \(\frac{x^5 - x^2}{x^2 + y^2 + z^2} \geq \frac{x^2 - \frac{1}{x}}{x^2 + y^2 + z^2} = \frac{x^2 - yz}{x^2 + y^2 + z^2} \).

As \((x^2 - yz) + (y^2 - zx) + (z^2 - xy) \geq 0 \), the result follows.

Solution 4: If \(p \) is prime \(> 3 \), we have

\(6, a_{p-2} = 3(2^p - 1) + 2(3^p - 1) + (6^p - 1) \) and, by Fermat’s theorem, \(p \) divides \(a_{p-2} \).

As \(2 \) and \(3 \) divide \(a_2 = 48 \), it follows that every prime \(p \) divides one of the \(a_n \); hence \(1 \) is the only positive integer relatively prime to all the \(a_n \).

Solution 5: The common point \(\Omega \) of the perpendicular bisectors of \([AC] \) and \([BD] \) is the center of the rotation mapping \(C \) to \(A \), \(B \) to \(D \) and \(E \) to \(F \). Thus \(\Omega \) is the second intersection (apart \(D \)) of the circles \(DAP \) and \(DFQ \). So, if \(<d, d'\) is the directed angle of the lines \(d \) and \(d' \), we have (modulo \(\pi \))

\(<RP, RQ =< AP, FQ =< AP, AD =< FD, FQ =< \Omega P, \Omega D =< \Omega D, \Omega Q =< \Omega P, \Omega Q \) and the circle \(PQR \) goes through \(\Omega \) (this is also a consequence of Miquel’s theorem).

Solution 6: Let \(f(i, j) \) if \(i \neq j \), be the number of contestants who have solved the problems \(i \) and \(j \); let \(n \) be the number of contestants.

As \(f(i, j) \geq \frac{2n + 1}{5} \), we have \(S = \sum_{1 \leq i < j \leq 6} f(i, j) \geq 15 \left(\frac{2n + 1}{5} \right) = 6n + 3 \).

If each contestant has solved at most 4 problems, we have \(\sum_{1 \leq i < j \leq 6} f(i, j) \leq nC_4 = 6n \), which is impossible.

Suppose now that only one contestant has solved 5 problems; say, the problems 1, 2, 3, 4, 5. If \(p \) is the number of contestants who have solved exactly 4 problems, we have \(6n + 3 \leq S \leq C_3^2 + pC_4^2 + (n - p - 1)C_3^3 \), hence \(p \geq n - \frac{1}{3} \) and \(p = n - 1 \).

So \(S = 10 + 6(n - 1) = 6n + 4 \). Moreover, \(k = \frac{2n + 1}{5} \in \mathbb{N} \) because, elsewhere,

\(S \geq 15 \left(\frac{2n + 2}{5} \right) = 6n + 6 \).
From \(\sum_{1 \leq i, j \leq 6} [f(i,j) - k] = 1 \), it follows that each \(f(i,j) \), for \(i < j \), is \(k \) except for one of them, \(f(i_0, j_0) \) whose value is \(k + 1 \).

If \(\varphi(t) = \sum_{i \leq t} f(i,t) \), then \(\varphi(6) \) is 3 times the number of contestants who have solved the problem 6 and, for \(1 \leq t < 6 \), \(\varphi(t) - 1 \) is 3 times the number of contestants who have solved the problem \(t \).

Hence, for \(1 \leq t < 6 \), we have \(\varphi(t) \neq \varphi(6) \).

But, if \(t \not\in \{i_0, j_0, 6\} \), we have \(\varphi(t) = \varphi(6) = \begin{cases} 5k & \text{si } j_0 < 6 \\ 5k + 1 & \text{si } j_0 = 6 \end{cases} \) and the contradiction.