
Solution 1 We have A1A2 + B1B2 + C1C2 =
A1A2

BC
BC + CA + AB = 0, hence

A2B1 + B2C1 + C2A1 = 0.

So, if A′ -or B′, or C′ - is the common point of the lines A2B1 and C2A1 - or B2C1 and A2B1,

or C2A1 and B2C1 -, the triangle A′B′C′ is equilateral.

The triangles AC1B2 and BA1C2 are congruent, because each of them is congruent with

C′C1C2; the isometry mapping AC1B2 to BA1C2 is clearly the rotation with center O and angle
2π
3

, where O is the center of the triangle ABC. Same way, the rotation O,− 2π
3

maps the

triangle AC1B2 to CB1A2.

Hence the triangle A1B1C1 is equilateral with center O and the lines A1B2, B1C2 et C1A2 are

the perpendicular bisectors of the sides of A1B1C1; it follows that these three lines concur at O.

Solution 2 If am = an with m < n, we have am ≡ an n + 1 which is impossible.Hence, the

an, for n ∈ Z, are distinct.

If αn = mina1,a2, ...,an and βn = maxa1,a2, ...,an, as αn ≡ βn βn − αn , we have

βn − αn < n and, a1, ...,an being distinct, a1, ...,an is a set of n consecutive integers.

As an | n ∈ Z has infinitely many positive and negative elements, it follows that

an | n ∈ Z = Z.

Solution 3 We have

x2 + y2 + z2x3 − x5 + y2 + z2 x2 − 1
x =

y2 + z2x3 − 12

x ≥ 0

Hence x5 − x2

x5 + y2 + z2
≥

x2 − 1
x

x2 + y2 + z2
≥ x2 − yz

x2 + y2 + z2
.

As x2 − yz + y2 − zx + z2 − xy ≥ 0, the result follows.

Solution 4 If p is prime > 3, we have

6.ap−2 = 32p−1 − 1 + 23p−1 − 1 + 6p−1 − 1 and, by Fermat’s theorem, p divides ap−2.

As 2 and 3 divide a2 = 48, it follows that every prime p divides one of the an; hence 1 is the

only positive integer relatively prime to all the an.

Solution 5 The common point Ω of the perpendicular bisectors of AC and BD is the

center of the rotation mapping C to A, B to D and E to F. Thus Ω is the second intersection (apart

D) of the circles DAP and DFQ. So, if < d,d′ > is the directed angle of the lines d and d′, we

have (modulo π)

< RP,RQ =< AP,FQ =< AP,AD +< FD,FQ =< ΩP,ΩD +< ΩD,ΩQ =< ΩP,ΩQ and the

circle PQR goes through Ω (this is also a consequence of Miquel’s theorem)

Solution 6 Let fi, j if i ≠ j, be the number of contestants who have solved the problems i

and j; let n be the number of contestants.

As fi, j ≥ 2n + 1
5

, wehave S = ∑
1≤i<j≤6

fi, j ≥ 15 2n + 1
5

= 6n + 3.

If each contestant has solved at most 4 problems, we have ∑
1≤i<j≤6

fi, j ≤ nC4
2 = 6n, which is

impossible.

Suppose now that only one contesant has solved 5 problems; say, the problems 1, 2, 3, 4, 5.

If p is the number of contestants who have solved exactly 4 problems, we have

6n + 3 ≤ S ≤ C5
2 + pC4

2 + n − p − 1C3
2, hence p ≥ n − 4

3
and p = n − 1.

So S = 10 + 6n − 1 = 6n + 4. Moreover, k = 2n + 1
5

∈ N because, elsewhere,

S ≥ 15 2n + 2
5

= 6n + 6.



From ∑
1≤i<j≤6

fi, j − k = 1, it follows that each fi, j, for i < j, is k except for one of them,

fi0, j0 whose value is k + 1.

If ϕt = ∑
i≠t

fi, t, then ϕ6 is 3 times the number of contestants who have solved the

problem 6 and, for 1 ≤ t < 6, ϕt − 1 is 3 times the number of contestants who have solved the

problem t.

Hence, for 1 ≤ t < 6, we have ϕt ≠ ϕ6.

But, if t ∉ i0, j0, 6, we have ϕt = ϕ6 =
5k si j0 < 6

5k + 1 si j0 = 6
and the contradiction.


