Solution 1 We have
$$\overrightarrow{A_1A_2} + \overrightarrow{B_1B_2} + \overrightarrow{C_1C_2} = \frac{\left\| \overrightarrow{A_1A_2} \right\|}{\left\| \overrightarrow{BC} \right\|} \left(\overrightarrow{BC} + \overrightarrow{CA} + \overrightarrow{AB} \right) = \overrightarrow{0}$$
, hence

 $\overrightarrow{A_2B_1} + \overrightarrow{B_2C_1} + \overrightarrow{C_2A_1} = \overrightarrow{0}.$

So, if A' -or B', or C' - is the common point of the lines A_2B_1 and C_2A_1 - or B_2C_1 and A_2B_1 , or C_2A_1 and B_2C_1 -, the triangle A'B'C' is equilateral.

The triangles AC_1B_2 and BA_1C_2 are congruent, because each of them is congruent with $C'C_1C_2$; the isometry mapping AC_1B_2 to BA_1C_2 is clearly the rotation with center O and angle $\frac{2\pi}{3}$, where O is the center of the triangle ABC. Same way, the rotation $\left(O, -\frac{2\pi}{3}\right)$ maps the triangle AC_1B_2 to CB_1A_2 .

Hence the triangle $A_1B_1C_1$ is equilateral with center O and the lines A_1B_2 , B_1C_2 et C_1A_2 are the perpendicular bisectors of the sides of $A_1B_1C_1$; it follows that these three lines concur at O.

Solution 2 If $a_m = a_n$ with m < n, we have $a_m \equiv a_n [n+1]$ which is impossible. Hence, the a_n , for $n \in Z$, are distinct.

If $\alpha_n = \min(a_1, a_2, ..., a_n)$ and $\beta_n = \max(a_1, a_2, ..., a_n)$, as $\alpha_n \equiv \beta_n [\beta_n - \alpha_n]$, we have $\beta_n - \alpha_n < n$ and, $a_1, ..., a_n$ being distinct, $\{a_1, ..., a_n\}$ is a set of *n* consecutive integers.

As $\{a_n \mid n \in Z\}$ has infinitely many positive and negative elements, it follows that $\{a_n \mid n \in Z\} = Z$.

Solution 3 We have

$$[(x^{2} + y^{2} + z^{2})x^{3} - (x^{5} + y^{2} + z^{2})](x^{2} - \frac{1}{x}) = \frac{(y^{2} + z^{2})(x^{3} - 1)^{2}}{x} \ge 0$$

Hence $\frac{x^{5} - x^{2}}{x^{5} + y^{2} + z^{2}} \ge \frac{x^{2} - \frac{1}{x}}{x^{2} + y^{2} + z^{2}} \ge \frac{x^{2} - yz}{x^{2} + y^{2} + z^{2}}.$
As $(x^{2} - yz) + (y^{2} - zx) + (z^{2} - xy) \ge 0$, the result follows.

Solution 4 If p is prime > 3, we have

 $6.a_{p-2} = 3(2^{p-1} - 1) + 2(3^{p-1} - 1) + (6^{p-1} - 1)$ and, by Fermat's theorem, *p* divides a_{p-2} . As 2 and 3 divide $a_2 = 48$, it follows that every prime *p* divides one of the a_n ; hence 1 is the only positive integer relatively prime to all the a_n .

Solution 5 The common point Ω of the perpendicular bisectors of [AC] and [BD] is the center of the rotation mapping *C* to *A*, *B* to *D* and *E* to *F*. Thus Ω is the second intersection (apart *D*) of the circles *DAP* and *DFQ*. So, if $\langle d, d' \rangle$ is the directed angle of the lines *d* and *d'*, we have (modulo π)

 $< RP, RQ = < AP, FQ = < AP, AD + < FD, FQ = < \Omega P, \Omega D + < \Omega D, \Omega Q = < \Omega P, \Omega Q$ and the circle *PQR* goes through Ω (this is also a consequence of Miquel's theorem)

Solution 6 Let f(i,j) if $i \neq j$, be the number of contestants who have solved the problems *i* and *j*; let *n* be the number of contestants.

As
$$f(i,j) \ge \frac{2n+1}{5}$$
, we have $S = \sum_{1 \le i < j \le 6} f(i,j) \ge 15\left(\frac{2n+1}{5}\right) = 6n+3$.

If each contestant has solved at most 4 problems, we have $\sum_{1 \le i < j \le 6} f(i,j) \le nC_4^2 = 6n$, which is

impossible.

Suppose now that only one contesant has solved 5 problems; say, the problems 1, 2, 3, 4, 5. If p is the number of contestants who have solved exactly 4 problems, we have $6n + 3 \le S \le C_5^2 + pC_4^2 + (n - p - 1)C_3^2$, hence $p \ge n - \frac{4}{3}$ and p = n - 1. So S = 10 + 6(n - 1) = 6n + 4. Moreover, $k = \frac{2n + 1}{5} \in N$ because, elsewhere, $S \ge 15\left(\frac{2n + 2}{5}\right) = 6n + 6$. From $\sum_{1 \le i < j \le 6} [f(i,j) - k] = 1$, it follows that each f(i,j), for i < j, is k except for one of them, $f(i_0, j_0)$ whose value is k + 1. If $\varphi(t) = \sum_{i \ne t} f(i, t)$, then $\varphi(6)$ is 3 times the number of contestants who have solved the

problem 6 and, for $1 \le t < 6$, $\varphi(t) - 1$ is 3 times the number of contestants who have solved the problem *t*.

Hence, for $1 \le t < 6$, we have $\varphi(t) \ne \varphi(6)$.

But, if
$$t \notin \{i_0, j_0, 6\}$$
, we have $\varphi(t) = \varphi(6) = \begin{cases} 5k \sin j_0 < 6\\ 5k + 1 \sin j_0 = 6 \end{cases}$ and the contradiction.