Solution 1 We have $\overrightarrow{A_{1} A_{2}}+\overrightarrow{B_{1} B_{2}}+\overrightarrow{C_{1} C_{2}}=\frac{\left\|\overrightarrow{A_{1} A_{2}}\right\|}{\|\overrightarrow{B C}\|}(\overrightarrow{B C}+\overrightarrow{C A}+\overrightarrow{A B})=\overrightarrow{0}$, hence $\overrightarrow{A_{2} B_{1}}+\overrightarrow{B_{2} C_{1}}+\overrightarrow{C_{2} A_{1}}=\overrightarrow{0}$.

So, if A^{\prime}-or B^{\prime}, or C^{\prime} - is the common point of the lines $A_{2} B_{1}$ and $C_{2} A_{1}-$ or $B_{2} C_{1}$ and $A_{2} B_{1}$, or $C_{2} A_{1}$ and $B_{2} C_{1}$, the triangle $A^{\prime} B^{\prime} C^{\prime}$ is equilateral.

The triangles $A C_{1} B_{2}$ and $B A_{1} C_{2}$ are congruent, because each of them is congruent with $C^{\prime} C_{1} C_{2}$; the isometry mapping $A C_{1} B_{2}$ to $B A_{1} C_{2}$ is clearly the rotation with center O and angle $\frac{2 \pi}{3}$, where O is the center of the triangle $A B C$. Same way, the rotation $\left(O,-\frac{2 \pi}{3}\right)$ maps the triangle $A C_{1} B_{2}$ to $C B_{1} A_{2}$.

Hence the triangle $A_{1} B_{1} C_{1}$ is equilateral with center O and the lines $A_{1} B_{2}, B_{1} C_{2}$ et $C_{1} A_{2}$ are the perpendicular bisectors of the sides of $A_{1} B_{1} C_{1}$; it follows that these three lines concur at O.

Solution 2 If $a_{m}=a_{n}$ with $m<n$, we have $a_{m} \equiv a_{n}[n+1]$ which is impossible. Hence, the a_{n}, for $n \in Z$, are distinct.

If $\alpha_{n}=\min \left(a_{1}, a_{2}, \ldots, a_{n}\right)$ and $\beta_{n}=\max \left(a_{1}, a_{2}, \ldots, a_{n}\right)$, as $\alpha_{n} \equiv \beta_{n}\left[\beta_{n}-\alpha_{n}\right]$, we have $\beta_{n}-\alpha_{n}<n$ and, a_{1}, \ldots, a_{n} being distinct, $\left\{a_{1}, \ldots, a_{n}\right\}$ is a set of n consecutive integers.

As $\left\{a_{n} \mid n \in Z\right\}$ has infinitely many positive and negative elements, it follows that $\left\{a_{n} \mid n \in Z\right\}=Z$.

Solution 3 We have
$\left[\left(x^{2}+y^{2}+z^{2}\right) x^{3}-\left(x^{5}+y^{2}+z^{2}\right)\right]\left(x^{2}-\frac{1}{x}\right)=\frac{\left(y^{2}+z^{2}\right)\left(x^{3}-1\right)^{2}}{x} \geq 0$
Hence $\frac{x^{5}-x^{2}}{x^{5}+y^{2}+z^{2}} \geq \frac{x^{2}-\frac{1}{x}}{x^{2}+y^{2}+z^{2}} \geq \frac{x^{2}-y z}{x^{2}+y^{2}+z^{2}}$.
As $\left(x^{2}-y z\right)+\left(y^{2}-z x\right)+\left(z^{2}-x y\right) \geq 0$, the result follows.
Solution 4 If p is prime >3, we have
$6 . a_{p-2}=3\left(2^{p-1}-1\right)+2\left(3^{p-1}-1\right)+\left(6^{p-1}-1\right)$ and, by Fermat's theorem, p divides a_{p-2}.
As 2 and 3 divide $a_{2}=48$, it follows that every prime p divides one of the a_{n}; hence 1 is the only positive integer relatively prime to all the a_{n}.

Solution 5 The common point Ω of the perpendicular bisectors of $[A C]$ and $[B D]$ is the center of the rotation mapping C to A, B to D and E to F. Thus Ω is the second intersection (apart $D)$ of the circles $D A P$ and $D F Q$. So, if $<d, d^{\prime}>$ is the directed angle of the lines d and d^{\prime}, we have (modulo π)
$<R P, R Q=<A P, F Q=<A P, A D+<F D, F Q=<\Omega P, \Omega D+<\Omega D, \Omega Q=<\Omega P, \Omega Q$ and the circle $P Q R$ goes through Ω (this is also a consequence of Miquel's theorem)

Solution 6 Let $f(i, j)$ if $i \neq j$, be the number of contestants who have solved the problems i and j; let n be the number of contestants.

As $f(i, j) \geq \frac{2 n+1}{5}$, wehave $S=\sum_{1 \leq i<j \leq 6} f(i, j) \geq 15\left(\frac{2 n+1}{5}\right)=6 n+3$.
If each contestant has solved at most 4 problems, we have $\sum_{1 \leq i<j \leq 6} f(i, j) \leq n C_{4}^{2}=6 n$, which is impossible.

Suppose now that only one contesant has solved 5 problems; say, the problems $1,2,3,4,5$.
If p is the number of contestants who have solved exactly 4 problems, we have
$6 n+3 \leq S \leq C_{5}^{2}+p C_{4}^{2}+(n-p-1) C_{3}^{2}$, hence $p \geq n-\frac{4}{3}$ and $p=n-1$.
So $S=10+6(n-1)=6 n+4$. Moreover, $k=\frac{2 n+1}{5} \in N$ because, elsewhere, $S \geq 15\left(\frac{2 n+2}{5}\right)=6 n+6$.

From $\sum_{1 \leq i<j \leq 6}[f(i, j)-k]=1$, it follows that each $f(i, j)$, for $i<j$, is k except for one of them, $f\left(i_{0}, j_{0}\right)$ whose value is $k+1$.

If $\varphi(t)=\sum_{i \neq t} f(i, t)$, then $\varphi(6)$ is 3 times the number of contestants who have solved the problem 6 and, for $1 \leq t<6, \varphi(t)-1$ is 3 times the number of contestants who have solved the problem t.

Hence, for $1 \leq t<6$, we have $\varphi(t) \neq \varphi(6)$.
But, if $t \notin\left\{i_{0}, j_{0}, 6\right\}$, we have $\varphi(t)=\varphi(6)=\left\{\begin{array}{c}5 k \text { si } j_{0}<6 \\ 5 k+1 \text { si } j_{0}=6\end{array}\right\}$ and the contradiction.

