Congruent Inscribed Rectangles

Jean-Pierre Ehrmann

Abstract. We solve the construction problem of an interior point P in a given triangle ABC with congruent rectangles inscribed in the subtriangles PBC, PCA and PAB.

1. Congruent inscribed rectangles

Given a triangle with sidelengths a, b, c, let $L_m = \min (a, b, c)$; $L \in (0, L_m)$ and $\mu > 0$. Let P be a point inside ABC with distances d_a, d_b, d_c to the sidelines of ABC. Suppose that a rectangle with lengths of sides L and μL is inscribed in the triangle PBC, with two vertices with distance L on the segment BC, the other vertices on the segments PB and PC. Then, $\frac{L}{d_a - \mu L} = \frac{a}{d_a}$, or $d_a = \frac{\mu a L}{a - L}$.

If we can inscribe congruent rectangles with side lengths L and μL in the three triangles PBC, PCA, PAB, we have necessarily

$$f_\mu(L) := \frac{a^2}{a - L} + \frac{b^2}{b - L} + \frac{c^2}{c - L} - \frac{2\Delta}{\mu L} = 0,$$

where Δ is the area of triangle ABC. This is because $ad_a + bd_b + cd_c = 2\Delta$.

The function $f_{\mu}(L)$ increases from $-\infty$ to $+\infty$ when L moves on $(0, L_m)$. The equation $f_{\mu}(L) = 0$ has a unique root L_{μ} in $(0, L_m)$ and the point

$$P_{\mu} = \left(\frac{a^2}{a-L_{\mu}} : \frac{b^2}{b-L_{\mu}} : \frac{c^2}{c-L_{\mu}} \right)$$

in homogeneous barycentric coordinates is the only point P inside ABC for which we can inscribe congruent rectangles with side lengths L_{μ} and μL_{μ} in the three triangles PBC, PCA, PAB. If \mathcal{H}_0 is the circumhyperbola through I (incenter) and K (symmedian point), the locus of P_{μ} when μ moves on $(0, +\infty)$ is the open arc Ω of \mathcal{H}_0 from I to the vertex of ABC opposite to the shortest side. See Figure 1. For $\mu = 1$, the smallest root L_1 of $f_1(L) = 0$ leads to the point P_1 with congruent inscribed squares.

![Figure 2](image)

2. Construction of congruent inscribed rectangles

Consider $P \in \Omega$, Q and E the reflections of P and C with respect to the line IB. The parallel to AB through Q intersects BP at F. The lines EF and AP intersect at X. Then the parallel to AB through X is a sideline of the rectangle inscribed in PAB. The reflections of this line with respect to AI and BI will each give a sideline of the two other rectangles.\(^1\)

Proof. We have $\frac{BE}{BA} = \frac{a}{c}$, $\frac{BF}{BP} = \frac{d_c}{d_a} = \frac{c}{a} \frac{a - L_{\mu}}{c - L_{\mu}}$. Applying the Menelaus theorem to triangle PAB and transversal EFX, we have

$$\frac{XA}{XP} = \frac{FB}{FP} \frac{EA}{EB} = \frac{L_{\mu} - c}{L_{\mu}}.$$

More over, the sidelines of the rectangles parallel to BC, CA, AB form a triangle homothetic at I with ABC. \(\square\)

\(^1\)This construction was given by Bernard Gibert.
3. Construction of P_μ

The point P_μ is in general not constructible with ruler and compass. We give here a construction as the intersection of the arc Ω with a circle.

Consider the points

$$X_{100} = \left(\frac{a}{b-c} : \frac{b}{c-a} : \frac{c}{a-b} \right)$$

and

$$X_{106} = \left(\frac{a^2}{b+c-2a} : \frac{b^2}{c+a-2b} : \frac{c^2}{a+b-2c} \right)$$

on the circumcircle. Note that the line $X_{100}X_{106}$ passes through the incenter I. The line joining X_{106} to the symmedian point K intersects the circumcircle again at

$$X_{101} = \left(\frac{a^2}{b-c} : \frac{b^2}{c-a} : \frac{c^2}{a-b} \right).$$

Construction. Draw outwardly a line ℓ parallel to AC at a distance μb from AC, intersecting the line CK at S. The parallel at S to the line CX_{101} intersects the line $KX_{101}X_{106}$ at Y_μ. Then P_μ is the intersection of the arc Ω with the circle through X_{100}, X_{106}, and Y_μ. See Figure 4.

Proof. From

$$L = \frac{2a\Delta x}{2\Delta x + \mu a^2(x+y+z)} = \frac{2b\Delta y}{2\Delta x + \mu b^2(x+y+z)} = \frac{2c\Delta z}{2\Delta z + \mu c^2(x+y+z)},$$

\footnote{We follow the notations of [1]. Here, X_{100} is the isogonal conjugate of the infinite point of the trilinear polar of the incenter, and X_{106} is the isogonal conjugate of the infinite point of the line GI joining the centroid and the incenter.}
we note that \(P_\mu \) lies on the three hyperbolas \(\mathcal{H}_a, \mathcal{H}_b, \) and \(\mathcal{H}_c \) with equations

\[
\begin{align*}
\mu bc(x + y + z)(cy - bz) + 2\Delta(b - c)yz &= 0, \\
\mu ca(x + y + z)(az - cx) + 2\Delta(c - a)zx &= 0, \\
\mu ab(x + y + z)(bx - ay) + 2\Delta(a - b)xy &= 0.
\end{align*}
\]

Computing \(a^2(b - c)(c - a)\mathcal{H}_a + b^2(b - c)(a - b)\mathcal{H}_b + c^2(c - a)(b - c)\mathcal{H}_c \), we see that \(P_\mu \) lies on the circle \(\Gamma_\mu \):

\[
\mu abc(x + y + z)\Lambda + 2\Delta(a - b)(b - c)(c - a)(a^2yz + b^2zx + c^2xy) = 0,
\]

where

\[
\Lambda = bc(b - c)(b + c - 2a)x + ca(c - a)(c + a - 2b)y + ab(a + b - 2c)(a - b)z.
\]

As \(\Lambda = 0 \) is the line \(X_{100}X_{106} \), the circle \(\Gamma_\mu \) passes through \(X_{100} \) and \(X_{106} \).

Now, as \(\ell \) is the line \(2\Delta y + \mu b^2(x + y + z) = 0 \), we have

\[
S = \left(a^2 : b^2 : - \left(a^2 + b^2 + \frac{2\Delta}{\mu} \right) \right).
\]

The parallel through \(S \) to \(CX_{101} \) is the line

\[
\mu(b + a - 2c)(x + y + z) + 2\Delta \left(\frac{(b - c)x}{a^2} + \frac{(a - c)y}{b^2} \right) = 0,
\]

and \(KX_{101} \) is the line

\[
b^2c^2(b - c)(b + c - 2a)x + c^2a^2(c - a)(c + a - 2b)y + a^2b^2(a - b)(a + b - 2c)z = 0.
\]

We can check that these two lines intersect at the point

\[
Y_\mu = (a^2(2\Delta(c - a)(a - b) + \mu(-a^2b^2 + c^4) + 2abc(b + c) + (b^4 - 2b^3c - 2b^3c + c^4))

+ b^2(2\Delta(a - b)(b - c) + \mu(-b^2(c^2 + a^2) + 2abc(c + a) + (c^4 - 2c^3a - 2ca^3 + a^4))

+ c^2(2\Delta(b - c)(c - a) + \mu(-c^2(a^2 + b^2) + 2abc(a + b) + (a^4 - 2a^3b - 2ab^3 + b^4)))
\]

on the circle \(\Gamma_\mu \).

Remark. The circle through \(X_{100}, \) \(X_{106} \) and \(P_\mu \) is the only constructible circle through \(P_\mu \), and there is no constructible line through \(P_\mu \).

References

http://cedar.evansville.edu/~ck6/encyclopedia/.

Jean-Pierre Ehrmann: 6, rue des Cailloux, 92110 - Clichy, France
E-mail address: Jean-Pierre.EHRMANN@wanadoo.fr