Another 5-step Division of a Segment in the Golden Section

Kurt Hofstetter

Abstract. We give one more 5-step division of a segment into golden section, using ruler and compass only.

Inasmuch as we have given in [1, 2] 5-step constructions of the golden section we present here another very simple method using ruler and compass only. It is fascinating to discover how simple the golden section appears. For two points P and Q, we denote by $P(Q)$ the circle with P as center and PQ as radius.

![Diagram of the construction](image)

Construction. Given a segment AB, construct

1. $C_1 = A(B)$,
2. $C_2 = B(A)$, intersecting C_1 at C and D,
3. the line AB to intersect C_1 at E (apart from B),
4. $C_3 = E(B)$ to intersect C_2 at F (so that C and F are on opposite sides of AB),
5. the segment CF to intersect AB at G.

The point G divides the segment AB in the golden section.

Proof. Suppose AB has unit length. It is enough to show that $AG = \frac{1}{2}(\sqrt{5} - 1)$.

Extend BA to intersect C_3 at H. Let CD intersect AB at I, and let J be the orthogonal projection of F on AB. In the right triangle HFB, $BH = 4$, $BF = 1$. Since $BF^2 = BJ \times BH$, $BJ = \frac{1}{4}$. Therefore, $IJ = \frac{1}{4}$. It also follows that $JF = \frac{1}{4}\sqrt{15}$.

![Diagram](image)

Figure 2

Now, $\frac{IG}{GJ} = \frac{IC}{IF} = \frac{1}{2} \frac{\sqrt{3}}{\sqrt{5}} = \frac{2}{\sqrt{15}}$. It follows that $IG = \frac{2}{\sqrt{15}} \cdot IJ = \frac{\sqrt{5} - 2}{2}$, and $AG = \frac{1}{2} + IG = \frac{\sqrt{5} - 1}{2}$. This shows that G divides AB in the golden section. \qed

Remark. If FD is extended to intersect AH at G', then G' is such that $G'A : AB = \frac{1}{2}(\sqrt{5} + 1) : 1$.

After the publication of [2], Dick Klingens and Marcello Tarquini have kindly written to point out that the same construction had appeared in [3, p.51] and [4, S.37] almost one century ago.

References

Kurt Hofstetter: Object Hofstetter, Media Art Studio, Langegasse 42/8c, A-1080 Vienna, Austria
E-mail address: pendel@sunpendulum.at