Extreme Areas of Triangles in Poncelet’s Closure Theorem

Mirko Radić

Abstract. Among the triangles with the same incircle and circumcircle, we determine the ones with maximum and minimum areas. These are also the ones with maximum and minimum perimeters and sums of altitudes.

Given two circles C_1 and C_2 of radii r and R whose centers are at a distance d apart satisfying Euler’s relation

$$R^2 - d^2 = 2Rr,$$

by Poncelet’s closure theorem, for every point A_1 on the circle C_2, there is a triangle $A_1A_2A_3$ with incircle C_1 and circumcircle C_2. In this article we determine those triangles with extreme areas, perimeters, and sum of altitudes.

Denote by t_m and t_M respectively the lengths of the shortest and longest tangents that can be drawn from C_2 to C_1. These are given by

$$t_m = \sqrt{(R - d)^2 - r^2}, \quad t_M = \sqrt{(R + d)^2 - r^2}.$$

We shall use the following result given in [2, Theorem 2.2]. Let t_1 be any given length satisfying

$$t_m \leq t_1 \leq t_M.$$
and let t_2 and t_3 be given by

$$
t_2 = \frac{2Rrt_1 + \sqrt{D}}{r^2 + t_1^2}, \quad t_3 = \frac{2Rrt_1 - \sqrt{D}}{r^2 + t_1^2},
$$

where

$$
D = 4R^2r^2t_1^2 - r^2(r^2 + t_1^2)(4Rr + r^2 + t_1^2).
$$

Then there is a triangle $A_1A_2A_3$ with incircle C_1 and circumcircle C_2 with side lengths

$$
a_i = |A_iA_{i+1}| = t_i + t_{i+1}, \quad i = 1, 2, 3.
$$

Here, the indices are taken modulo 3. It is easy to check that

$$(t_1 + t_2 + t_3)r^2 = t_1t_2t_3,
$$

and that these are necessary and sufficient for C_1 and C_2 to be the incircle and circumcircle of triangle $A_1A_2A_3$.

Denote by $J(t_1)$ the area of triangle $A_1A_2A_3$. Thus,

$$
J(t_1) = r(t_1 + t_2 + t_3).
$$

Note that $D = 0$ when $t_1 = t_m$ or $t_1 = t_M$. In these cases,

$$
t_2 = t_3 = \begin{cases}
\frac{2Rrt_m}{r^2 + t_m^2}, & \text{if } t_1 = t_m, \\
\frac{2Rrt_M}{r^2 + t_M^2}, & \text{if } t_1 = t_M.
\end{cases}
$$

For convenience, we shall write

$$
\hat{t}_m = \frac{2Rrt_m}{r^2 + t_m^2} \quad \text{and} \quad \hat{t}_M = \frac{2Rrt_M}{r^2 + t_M^2}.
$$

Theorem 1. $J(t_1)$ is maximum when $t_1 = t_M$ and minimum when $t_1 = t_m$. In other words, $J(t_m) \leq J(t_1) \leq J(t_M)$ for $t_m \leq t_1 \leq t_M$.

Proof. It follows from (6) and (4) that

$$
J(t_1) = r\left(t_1 + \frac{4Rrt_1}{r^2 + t_1^2}\right).
$$

From $\frac{d}{dt_1}J(t_1) = 0$, we obtain the equation

$$
t_1^4 - 2(2Rr - r^2)t_1^2 + 4Rr^3 + r^4 = 0,
$$

and

$$
t_1^2 = 2Rr - r^2 \pm 2r\sqrt{R^2 - 2Rr} = 2Rr - r^2 \pm 2rd.
$$

Since $4R^2r^2 = (R^2 - d^2)^2$, we have
Extreme areas of triangles in Poncelet’s closure theorem

\[2Rr - r^2 + 2rd - \hat{t}_m^2 \]
\[= 2Rr - r^2 + 2rd - \frac{(R + d)^2((R - d)^2 - r^2)}{(R - d)^2} \]
\[= \frac{(R - d)^2(2Rr - r^2 + 2rd) - (R + d)^2((R - d)^2 - r^2)}{(R - d)^2} \]
\[= \frac{((R + d)^2 - (R - d)^2)r^2 + 2r(R + d)(R - d)^2 - (R^2 - d^2)^2}{(R - d)^2} \]
\[= \frac{4Rdr^2 + 2r(R - d)(2Rr) - (2Rr)^2}{(R - d)^2} \]
\[= 0. \]

Similarly, \(2Rr - r^2 - 2rd - \hat{t}_M^2 = 0 \). It follows that \(\frac{d}{dt} J(t_1) = 0 \) for \(t_1 = \hat{t}_m, \hat{t}_M \). The maximum of \(J \) occurs at \(t_1 = t_M \) and \(\hat{t}_M \) while the minimum occurs at \(t_1 = t_m \) and \(\hat{t}_m \).

![Figure 2](image)

The triangle determined by \(\hat{t}_m \) (respectively \(\hat{t}_M \)) is exactly the one determined by \(t_m \) (respectively \(t_M \)).

We conclude with an interesting corollary. Let \(h_1, h_2, h_3 \) be the altitudes of the triangle \(A_1A_2A_3 \). Since
\[2R(h_1 + h_2 + h_3) = a_1a_2 + a_2a_3 + a_3a_1 = (t_1 + t_2 + t_3)^2 + 4Rr + r^2,\]

the following are equivalent:

- the triangle has maximum (respectively minimum) area,
- the triangle has maximum (respectively minimum) perimeter,
- the triangle has maximum (respectively minimum) sum of altitudes.

It follows that these are precisely the two triangles determined by \(t_M\) and \(t_m\).

References

Mirko Radić: Department of Mathematics, Faculty of Philosophy, University of Rijeka, 51000 Rijeka, Omladinska 14, Croatia

E-mail address: mradic@pefri.hr