Optimal Packings of Two Ellipses in a Square

Thierry Gensane and Pascal Honvault

Abstract. For each real number E in $[0, 1]$, we describe the densest packing P_E of two non-overlapping congruent ellipses of aspect ratio E in a square. We find three different patterns as E belongs to $[0, 1/2]$, $[1/2, E_0]$ where $E_0 = \sqrt{(6\sqrt{3} - 3)/11}$, and $[E_0, 1]$. The technique of unavoidable sets – used by Friedman for proving the optimality of square packings – allows to prove the optimality of each packing P_E.

1. Introduction

We consider the following generalization of the classical disk packing problem in a compact convex domain K: Let $n \in \mathbb{N}$ and $E \in [0, 1]$, what is the densest packing of n non-overlapping congruent ellipses of aspect ratio E in K?

In this paper, we describe for each aspect ratio E in $[0, 1]$, the densest packing P_E of two congruent unit ellipses of aspect ratio E in the square $K = [0, 1]^2$ and we prove the optimality of these packings. In Figure 1, we display six representative optimal packings of two congruent ellipses. For $E = 1$, the optimal packing P_1 is composed of two disks lying in opposite corners, see [4] for a large list of dense packings of congruent disks in the square. An introductory bibliography on disk packing problems can be found in [1, 3]. When E decreases from 1 to $E_0 = \sqrt{(6\sqrt{3} - 3)/11} \approx 0.8198$, the ellipses of optimal packings P_E flatten by keeping a constant tilted angle equals to $-\pi/4$. For $E \in [1/2, E_0]$, the angle of the two ellipses of P_E decreases and when $E = 1/2$ the ellipses reach a third side of the square. When E decreases from $1/2$ to 0, the ellipses slide along the sides and move towards the diagonal.

In all the following we consider only unit ellipses that is, ellipses whose equation is $x^2 - y^2/E^2 = 1$ when their major and minor axes coincide with the cartesian axes. We can reformulate our problem: What is the side length $s_2(E)$ of the smallest square which contains two non-overlapping unit ellipses of aspect ratio E?

In order to prove the optimality of square packings, Friedman [2] used sets of unavoidable points. We adapt his definition to the case of ellipse packings: Let $E \in [0, 1]$ and let P be a set of $n - 1$ points in the square $K_s = [0, s]^2$ with $s > 0$. We say that P is a set of unavoidable points in K_s if any unit ellipse of aspect ratio E in K_s contains an element of P (possibly on its boundary). If P is a set of unavoidable points in K_s, then $s_{n}(E) \geq s$. For the convenience of the reader, we recall the proof given by Friedman: Shrinking the square K_s by a factor of $1 - \varepsilon/s$ gives a set P' of $n - 1$ points in a square $K_{s-\varepsilon}$ so that any unit ellipse in $K_{s-\varepsilon}$ contains an element of P' in its interior. Therefore no more than
In the case of \(n = 2 \) ellipses and in order to get \(s_2(E) \geq s \), it suffices to show that the center \(\Omega \) of \(K_s = [0, s]^2 \) belongs to each unit ellipse \(e \subset K_s \) of aspect ratio \(E \). In fact, we will consider only unit ellipses \(e_\alpha = e(\lambda, \mu), \alpha, E \) centered at \((\lambda, \mu) \) with \(\lambda > 0, \mu > 0 \), tilted at an angle \(\alpha \in [-\pi/2, -\pi/4] \) and which are tangent to the axes \(x = 0 \) and \(y = 0 \):

Fact 1. Let \(K_s = [0, s]^2 \) be a square of side length \(s \) and \(\Omega = (s/2, s/2) \) its center. If for all \(\alpha \in [-\pi/2, -\pi/4] \), the ellipse \(e_\alpha \) contains the point \(\Omega \), then all unit ellipses \(e \) included in \(K_s \) contain \(\Omega \).

This fact is trivially obtained by contraposition (if a unit ellipse \(e \subset K_s \) does not contain the point \(\Omega \), we apply a translation followed by a reflection or a rotation and we get an ellipse \(e_\alpha \) with \(\alpha \in [-\pi/2, -\pi/4] \) which does not contain the point \(\Omega \)). As we want to find the minimal value of \(s \) such that each ellipse \(e_\alpha \subset K_s \) contains the center \(\Omega \), we consider the intersection points \(I = (x_I(\alpha), x_I(\alpha)) \) and \(J \) of the diagonal \(y = x \) and the ellipse \(e_\alpha \), the abscissa of \(I \) being larger than the one of \(J \). In Section 2 and 3 we will prove that:

- If \(0 < E \leq 1/2 \), there exists a unique \(\alpha_0 \in [-\pi/2, -\pi/4] \) such that \(x_I(\alpha_0) = \mu(\alpha_0) = \mu_0 \). The center \(\Omega = (\mu_0, \mu_0) \) is an unavoidable point in \(K_{2\mu_0} \) and then \(s_2(E) \geq 2\mu_0 \). The square \(K_{2\mu_0} \) is displayed on the right hand side of Figure 2.
- If \(1/2 < E < E_0 \), the abcissa \(x_I(\alpha) \) has a minimum value for a unique \(\alpha_0 \in [-\pi/2, -\pi/4] \). The center \(\Omega = (x_I(\alpha_0), x_I(\alpha_0)) \) is an unavoidable point

\(n - 1 \) non-overlapping unit ellipses can be packed into a square of side \(s - \varepsilon \), and \(s_n(E) > s - \varepsilon \). Since this is true for all \(\varepsilon > 0 \), we must have \(s_n(E) \geq s \). The upper bound \(s_n(E) \leq s \) is obtained by constructing a packing of \(n \) non-overlapping unit ellipses in \(K_s \).

Figure 1. Six optimal packings \(P_E \) of two ellipses for \(E = 1, 0.85, 0.69, 0.5, 0.4, 0.05 \).
in $K_{2xI}(\alpha_0)$ and then $s_2(E) \geq 2xI(\alpha_0)$. The three squares in Figure 3 represent $K_{2xI}(\alpha_0)$.

Figure 3. For $\frac{1}{2} < E < E_0$ and if $\alpha \neq \alpha_0$, the center of $K_{2xI}(\alpha_0)$ belongs to the interior of e_α.

- If $E_0 \leq E \leq 1$, the abscissa $xI(\alpha)$ is decreasing for $\alpha \in [-\pi/2, -\pi/4]$. The center $\Omega = (x_I(-\pi/4), x_I(-\pi/4))$ is an unavoidable point in $K_{2xI}(-\pi/4)$ and then $s_2(E) \geq 2xI(-\pi/4)$, see Figure 4 in Section 3.

We finish the paper by remarking that among all the optimal packings \mathcal{P}_E, the densest optimal packings of two congruent ellipses in the square is $\mathcal{P}_{1/2}$.

2. Technical lemmas.

First we precise the coordinates of the center of the ellipse e_α and the parametrization of e_α used in Lemma 3.

Lemma 1. (a) The coordinates of the center of the ellipse e_α are equal to

$$\lambda = \sqrt{\cos^2 \alpha + E^2 \sin^2 \alpha} \quad \text{and} \quad \mu = \sqrt{\sin^2 \alpha + E^2 \cos^2 \alpha}.$$
The function \(\mu \) is decreasing for \(\alpha \in [-\pi/2, -\pi/4] \) and we have \(\mu(-\pi/2) = 1 \) and \(\mu(-\pi/4) = \sqrt{(1 + E^2)/2} \).

(b) We have

\[
(2\lambda \mu)^2 = 4E^2 + (1 - E^2)^2 \sin^2 2\alpha.
\]

(c) The ellipse \(e_\alpha \) can be parameterized by

\[
e_\alpha(t) = \left(\begin{array}{c} \lambda \cos \phi + i \lambda \sin \phi \\ \mu \end{array} \right).
\]

where the angles \(\varphi \in [-\pi/2, 0] \) and \(\psi \in [-\pi, -\pi/2] \) are the respective arguments of the complex numbers \(\cos \alpha + iE \sin \alpha \) and \(\sin \alpha - iE \cos \alpha \).

Proof. (a) Let us consider the parametrization of the ellipse \(e_\alpha \)

\[
e_\alpha(t) = \left(\begin{array}{c} x(t) \\ y(t) \end{array} \right) = \left(\begin{array}{c} \lambda \cos \alpha - \sin \alpha \\ \sin \alpha \cos \alpha \end{array} \right) \left(\begin{array}{c} \cos t \\ E \sin t \end{array} \right).
\]

Let us recall that the orthoptic curve of \(e_\alpha \), i.e the locus of all points where the curve’s tangents meets at right angles, is the circle centered at \(\omega = (\lambda, \mu) \) with radius \(\sqrt{1 + E^2} \). Since the axes \(x = 0 \) and \(y = 0 \) are orthogonal, the origin \((0, 0)\) belongs to this circle and we have

\[
\lambda^2 + \mu^2 = 1 + E^2.
\]

The ellipse \(e_\alpha \) touches tangentially the axe \(x = 0 \). Therefore for some \(t \) we have \(x(t) = x'(t) = 0 \), which gives

\[
\lambda = -\cos \alpha \cos t + E \sin \alpha \sin t,
\]

\[
0 = -\cos \alpha \sin t - E \sin \alpha \cos t.
\]

By adding the squares of equations (6-7), we find \(\lambda^2 = \cos^2 \alpha E^2 \sin^2 \alpha \). The value of \(\mu \) comes from (5).

(b) We have

\[
(\lambda \mu)^2 = (\cos^2 \alpha + E^2 \sin^2 \alpha)(\sin^2 \alpha + E^2 \cos^2 \alpha)
\]

\[
= E^2(\cos^4 \alpha + \sin^4 \alpha) + (1 + E^4) \cos^2 \alpha \sin^2 \alpha
\]

\[
= E^2(1 - 2 \sin^2 \alpha \cos^2 \alpha) + (1 + E^4) \cos^2 \alpha \sin^2 \alpha,
\]

which gives the result.

(c) By definition of \(\varphi \), we have \(\lambda(\cos \varphi + i \sin \varphi) = \cos \alpha + iE \sin \alpha \). We get

\[
x(t) = \lambda + \cos \alpha \cos t - \sin \alpha E \sin t = \lambda + \lambda \cos(t + \varphi) = 2\lambda \cos^2 \left(\frac{t + \varphi}{2} \right).
\]

The expression of \(y(t) \) is obtained similarly. \(\square \)

In the proof of Lemma 3, we change the variable \(\alpha \) to the variable \(T \) that we now define:

Lemma 2. Let us consider the angles \(\varphi \) and \(\psi \) associated to the ellipse \(e_\alpha \) and defined in Lemma 1. We set \(\delta = \frac{\psi - \varphi}{2} \in [-\pi/4, 0] \) and \(T = -\cot \delta \). Then the real number \(T \) decreases monotonically from 1 at \(\alpha = -\pi/2 \) to \(E \) at \(\alpha = -\pi/4 \).
Proof. The definitions of φ and ψ give
\[
\frac{\mu}{\lambda} e^{i(\varphi - \psi)} = \frac{\sin(\alpha) - iE \cos(\alpha)}{\cos \alpha + iE \sin \alpha} = \frac{1}{\lambda^2} \left(\sin \alpha \cos \alpha (1 - E^2) - iE\right).
\]
Hence, for $\alpha \in [-\pi/2, -\pi/4]$ we have
\[
\cos(\psi - \varphi) = \frac{\sin 2\alpha (1 - E^2)}{2\lambda \mu} < 0 \text{ and } \sin(\psi - \varphi) = \frac{-E}{\lambda \mu} < 0.
\]
(8)

By (8) and the formula $\tan u = (1 - \cos 2u) / \sin 2u$, we find
\[
\tan \left(\frac{\psi - \varphi}{2}\right) = \frac{1 - \frac{\sin 2\alpha (1 - E^2)}{2\lambda \mu}}{\frac{-E}{\lambda \mu}} = \frac{2\lambda \mu - 2\alpha (1 - E^2)}{-2E}.
\]
(9)

With Lemma 1 (b) we find
\[
\tan \left(\frac{\psi - \varphi}{2}\right) = \frac{1}{2E} \left(-\sqrt{4E^2 + (1 - E^2)^2 \sin^2 2\alpha + (1 - E^2) \sin 2\alpha}\right).
\]

As $\sin 2\alpha$ decreases monotonically from 0 to -1 on the interval $[-\pi/2, -\pi/4]$, we find that $\tan \left(\frac{(\psi - \varphi)}{2}\right)$ decreases from -1 to $-1/E$. Thus the real number $T = -1/ \tan \left(\frac{(\psi - \varphi)}{2}\right)$ decreases from 1 to E. \hfill \Box

Let us recall that $I = (x_I, x_I)$ is the intersection point of the diagonal $y = x$ and the ellipse e_α with a maximal x_I.

Lemma 3. Let us consider $E_0 = \sqrt{(6\sqrt{3} - 3)/11} \approx 0.8198$.
(a) If $E \in [E_0, 1]$, x_I is decreasing for $\alpha \in [-\pi/2, -\pi/4]$.
(b) If $E \in]1/2, E_0[$, the function x_I reaches a unique minimal value for a unique real number $\alpha_0 \in [-\pi/2, -\pi/4]$.
(c) If $E \in [0, 1/2]$, the function x_I is increasing for $\alpha \in [-\pi/2, -\pi/4]$.

Proof. First we prove that
\[
x_I(\alpha) = \frac{E}{\sqrt{T}} \left(\sqrt{ET^2 + (1 + E^2)T + E - T^2E}\right),
\]
(10)

where $T = -\cot \delta$ has been defined in Lemma 2. We use the parametrization of the ellipse e_α given by (3) and we look for some $t \in [0, 2\pi]$ such that
\[
\sqrt{\lambda} \cos \left(\frac{t + \varphi}{2}\right) = \varepsilon \sqrt{\mu} \cos \left(\frac{t + \psi}{2}\right),
\]
(11)

where $\varepsilon = \pm 1$. Since the point I occurs for some $t \in [0, \pi]$ (and J for some $t \in [\pi, 2\pi]$), we have $(t + \varphi)/2 \in [-\pi/4, \pi/2]$, $(t + \psi)/2 \in [-\pi/2, \pi/4]$ and we get $\varepsilon = +1$ because the two cosines in (11) are positive. In this equality we expand $\cos((t + \psi)/2) = \cos((t + \varphi)/2 + \delta)$ and we find
\[
\sqrt{\lambda} \cos \left(\frac{t + \varphi}{2}\right) = \sqrt{\mu} \left(\cos \left(\frac{t + \varphi}{2}\right) \cos \delta - \sin \left(\frac{t + \varphi}{2}\right) \sin \delta\right),
\]
which gives
\[\tan \left(\frac{t + \varphi}{2} \right) = \frac{\sqrt{\mu \cos \delta} - \sqrt{\lambda}}{\sqrt{\mu \sin \delta}} \]
and
\[x_I = 2\lambda \cos^2 \left(\frac{t + \varphi}{2} \right) = \frac{2\lambda}{1 + \tan^2 (\frac{t + \varphi}{2})} = \frac{2\lambda \mu \sin^2 \delta}{(2\lambda \mu)^2} \]
By (8) and Lemma 1 (b) and since \(\sin^2 2\delta = 1 - \cos^2 (\psi - \varphi) \), we have
\[\sin^2 2\delta = \frac{(2\lambda \mu)^2 - (1 - E^2)^2 \sin^2 2\alpha}{(2\lambda \mu)^2} = \frac{4E^2}{(2\lambda \mu)^2}. \]
The previous equality gives \(2\lambda \mu = -2E / \sin 2\delta \) and by (5) we have \(\lambda + \mu = (1 + E^2 + 2\lambda \mu)^{1/2} \). Substituting these values in (12) we find
\[x_I = \frac{-E \sin \delta}{\cos \delta \left(\sqrt{1 + E^2 - \frac{E}{\sin \delta \cos \delta}} - \sqrt{\frac{-2E \cos \delta}{\sin \delta}} \right)} = \frac{E}{\sqrt{T} \left(\sqrt{(1 + E^2)T + \frac{E}{\sin^2 \delta}} - \sqrt{T \sqrt{T} \sqrt{2E}} \right)}. \]
It remains to use \(1 / \sin^2 \delta = 1 + T^2 \) and we get (10). Let us denote by \(f(T) \) the denominator of the right hand side of (10). We find
\[f'(T) = \frac{g(T) - h(T)}{2\sqrt{T} \sqrt{ET^2 + (1 + E^2)T + E}}, \]
where \(h(T) = 3\sqrt{2E} T \sqrt{ET^2 + (1 + E^2)T + E} \) and \(g(T) = 3ET^2 + 2(1 + E^2)T + E \). Since the functions \(g(T) \) and \(h(T) \) are positive, the sign of \(f'(T) \) is equal to the one of the polynomial \(P(T) = g^2(T) - h^2(T) \), that is
\[P(T) = -9E^2T^4 - 6E(1 + E^2)T^3 + 4(1 + E^2)T^2 + 4E(1 + E^2)T + E^2. \]
We get \(\lambda''(T) = -36E^2T^3 - 18E(1 + E^2)T^2 + 8(E^4 - E^2 + 1)T + 4E(1 + E^2) \). The discriminant of \(\lambda''(T) = -4(2E^2T^2 + 9E(1 + E^2)T - 2(E^4 - E^2 + 1)) \) is \(\Delta = 16 \cdot 27E^2(11E^4 - 2E^2 + 11) > 0 \). We remark that \(\lambda''(0) > 0 \) and \(\lim_{T \to \infty} \lambda''(T) = -\infty \), then \(\lambda''(T) \) has a unique positive root \(T_2 \). Since \(\lambda''(0) > 0 \) and \(\lim_{T \to \infty} \lambda''(T) = -\infty \), the polynomial \(\lambda''(T) \) has a unique root \(T_1 > T_2 \) and \(\lambda''(T) \geq 0 \) for all \(T \in [0, T_1] \). Finally, \(\lambda''(0) = E^2 > 0 \) implies that the polynomial \(\lambda(T) \) has a unique positive root \(T_0 \).
Moreover, \(P(E) = -E^2(11E^4 + 6E^2 - 9) \) vanishes at a unique positive value \(E_0 = \sqrt{(-3 + 6\sqrt{3})/11} \). We remark that \(T_0 = E_0 \) if and only if \(E = E_0 \). In the three following cases we conclude with Lemma 2:
(a) If \(E \in [E_0, 1] \), we have \(P(E) \leq 0 \). Then \(T_0 \leq E \leq 1 \) which implies that \(P(T) \leq 0 \) for all \(T \in [E, 1] \). So \(f(T) \) is decreasing on \([E, 1] \) and then \(x_I \) is increasing with respect to \(T \).
(b) If $E \in]1/2, E_0]$, we have $P(E) > 0$ and $P(1) = 2(E + 1)^2(2E - 1)(E - 2) < 0$. Then $E - T_0 < 1$ which implies that $f(T)$ is increasing on $[E, T_0]$ and decreasing on $[T_0, 1]$. Thus x_I is decreasing for $T \in [E, T_0]$ and increasing for $T \in [T_0, 1]$.

(c) If $E \in]0, 1/2]$, we have $P(E) \geq 0$ and $P(1) \geq 0$ which implies that $P(T) \geq 0$ on $[E, 1]$. Thus x_I is decreasing for $T \in [E, 1]$.

\[\square \]

3. Calculation of $s_2(E)$

Now we can describe the various optimal packings of two ellipses in the square and the corresponding side lengths $s_2(E)$.

Theorem 4. If $E \leq 1/2$, then

\[s_2(E) = \sqrt{(1 + E)^2 + \sqrt{(1 + E)^4 - 8E^2}}. \tag{14} \]

The minimum value $s_2(E)$ is obtained for two parallel ellipses $e_1 = e_{\alpha_0}$ and e_2 with

\[\alpha_0 = -\arccos \frac{1}{2} \sqrt{\frac{4 - s_2^2(E)}{1 - E^2}}, \tag{15} \]

and where e_2 is the reflection of e_1 through the center of the square.

Proof. If $\alpha = -\pi/2$, the center $\Omega = (\mu, \mu)$ of $K_{2\mu}$ does not belong to e_α (except for $E = 1/2$). If $\alpha = -\pi/4$, the center Ω is also the center of the ellipse e_α.

We know by Lemma 1 (a) and Lemma 3 (c) that $x_I - \mu$ is increasing for $\alpha \in [-\pi/2, -\pi/4]$. Then there exists a unique angle $\alpha_0 \in [-\pi/2, -\pi/4]$ such that $I = \Omega_0 = (\mu_0, \mu_0)$ with $\mu_0 = \mu(\alpha_0)$. We note that the center Ω_0 belongs to the boundary of the ellipse e_{α_0}, see Figure 2. Let us show that in the square $K_{2\mu_0}$, the center Ω_0 is an unavoidable point. By Fact 1, it suffices to show that any ellipses e_α included in $K_{2\mu_0}$ contain Ω_0:

- If $\alpha < \alpha_0$, the ellipse e_{α} is not contained in $K_{2\mu_0}$ because it intersects the upper side $y = 2\mu_0$ (except for $\alpha \in [-\pi/2, -\pi/4]$).

- If $\alpha > \alpha_0$, the point Ω_0 belongs to the interior of the ellipse e_{α} because x_I is increasing for $\alpha \in [\alpha_0, -\pi/4]$.

It remains to calculate α_0 and μ_0. First, we show that

\[\mu_0 - \lambda_0 = \frac{E}{\mu_0}. \tag{16} \]

We have by (4) that $e_{\alpha}(t) = (\mu, \mu)$ if and only if

\[\begin{align*}
\mu - \lambda &= \cos \alpha \cos t - E \sin \alpha \sin t, \\
0 &= \sin \alpha \cos t + E \cos \alpha \sin t.
\end{align*} \]

Substituting $-E \cos \alpha \sin t / \sin \alpha$ for $\cos t$ in the first equality, we find

\[\begin{align*}
-E \sin(t) &= (\mu - \lambda) \sin \alpha, \\
\cos t &= (\mu - \lambda) \cos \alpha,
\end{align*} \]

with $E = 0$.

\[\square \]
which implies \(E^2 = (\mu - \lambda)^2 (\sin^2 \alpha + E^2 \cos^2 \alpha) = (\mu - \lambda)^2 \mu^2 \), and then (16)

since \(\mu \geq \lambda \) for \(\alpha \in [-\pi/2, -\pi/4] \). By (5) we get for \(\alpha = \alpha_0 \),

\[
1 + E^2 + 2\lambda_0 \mu_0 = (\lambda_0 + \mu_0)^2 = (\lambda_0 - \mu_0 + 2\mu_0)^2 = \left(2\mu_0 - \frac{E}{\mu_0}\right)^2.
\]

Since (16) implies \(\mu_0^2 - E = \lambda_0 \mu_0 \), we have

\[
2(\mu_0^2 - E) = 4\mu_0^2 + \frac{E^2}{\mu_0^2} - 4E - (1 + E^2).
\]

This equation in \(\mu_0^2 \) leads to

\[
4\mu_0^2 - (1 + E)^2 + \varepsilon \sqrt{(1 + E)^4 - 8E^2},
\]

where \(\varepsilon = \pm 1 \). The case \(\varepsilon = -1 \) leads to \(4\lambda_0 \mu_0 = 4\mu_0^2 - 4E = (1 - E)^2 - \sqrt{(1 + E)^4 - 8E^2} \leq 0 \) what is impossible.

Then \(s_2(E) \geq 2\mu_0 = \sqrt{1 + E)^2} + \sqrt{(1 + E)^4 - 8E^2} \). We can pack in \(K_{2\mu_0} \) the reflection of \(e_{\alpha_0} \) through \(\Omega_0 \) and we get the equality (14). We finally obtain the angle (15) by considering \(\mu_0^2 = \sin^2 \alpha_0 + E^2 \cos^2 \alpha_0 \) and \(s_2(E) = 2\mu_0 \). \(\square \)

Theorem 5. If \(1/2 < E < E_0 \), then

\[
s_2(E) = \frac{2E}{\sqrt{T_0 \left(\sqrt{ET_0^2 + (1 + E^2)T_0 + E - T_0\sqrt{2E}} \right)}},
\]

where \(T_0 \) is the unique positive root of (13). The minimum value \(s_2(E) \) is obtained for two parallel ellipses \(e_1 = e_{\alpha_0} \) and \(e_2 \) with

\[
\alpha_0 = -\frac{1}{2} \left(\pi + \arcsin \frac{E(T_0^2 - 1)}{T_0(1 - E^2)} \right),
\]

and where the ellipse \(e_2 \) is the reflection of \(e_1 \) through the center of the square.

Proof. We denote by \(\alpha_0 \) the unique angle \(\alpha \) such that \(T_0 = T(\alpha) \) and by \(I_0 \) the intersection of \(e_{\alpha_0} \) with \(y = x \). Since the continuous function \(x_I \) is decreasing for \(\alpha \in [-\pi/2, \alpha_0] \) and increasing for \(\alpha \in [\alpha_0, -\pi/4] \), the point \(I_0 \) belongs to the interior of \(e_{\alpha} \) if \(\alpha \neq \alpha_0 \). Then any ellipse \(e_\alpha \) in \(K_{2x_{I_0}} \) contains \(I_0 \). As Fact 1 gives that \(I_0 \) is an unavoidable point, we have \(s_2(E) \geq 2x_{I_0} \). We can pack the reflection of the ellipse \(e_{\alpha_0} \) through \(I_0 \) and we get \(s_2(E) \leq 2x_{I_0} \). The value of \(x_{I_0} \) is given by (10).

By (2), (9) and since \(-1/T = \tan(\psi - \varphi)/2 \), we have

\[
(2\lambda \mu)^2 = \left(\frac{2E}{T} + (1 - E^2) \sin 2\alpha \right)^2 = 4E^2 + (1 - E^2)^2 \sin^2 2\alpha,
\]

which gives \(\sin 2\alpha = E(T^2 - 1)/(1 - E^2)T \) and (18) for \(2\alpha \in [-\pi, -\pi/2] \). \(\square \)

Theorem 6. If \(E_0 \leq E \leq 1 \), then

\[
s_2(E) = \sqrt{2} \left(\sqrt{1 + E^2} + E \right).
\]
The minimum value \(s_2(E) \) is obtained for two parallel ellipses \(e_1 = e_\alpha \) and \(e_2 \) with \(\alpha = -\pi/4 \) and where \(e_2 \) is the reflection of \(e_1 \) through the center of the square.

Proof. We consider again the intersection point \(I_0 \) of the ellipse \(e_{-\pi/4} \) and the diagonal \(y = x \). Since \(x_I \) is decreasing for \(\alpha \in [-\pi/2, -\pi/4] \), any ellipse \(e_\alpha \) in \(K_{2x_{I_0}} \) contains \(I_0 \). As Fact 1 gives that \(I_0 \) is an unavoidable point, we get \(s_2(E) \geq 2x_{I_0} = 2x_I(-\pi/4) = \sqrt{2}(\sqrt{1+E^2} + E) \). As in the two previous cases, we can pack the reflection of the ellipse \(e_{-\pi/4} \) through \(I_0 \) and we get the equality (19). \(\square \)

![Figure 4](image)

Figure 4. For \(E_0 \leq E \leq 1 \) and \(-\pi/4 \leq \alpha < -\pi/4 \), the center of \(K_{2x_I(-\pi/4)} \) belongs to the interior of \(e_\alpha \).

It is not surprising that among all the optimal packings \(\mathcal{P}_E \), the densest one is \(\mathcal{P}_{1/2} \), see Figure 1. We denote by \(d(E) \) the density of \(\mathcal{P}_E \) and we have for all \(E \) in \([0, 1]\),

\[
d(E) = \frac{2\pi E}{s_2^2(E)}.
\]

The formulas (14), (17), (19) for \(s_2(E) \) give that \(d(E) \) equals to

\[
d_1(E) = \frac{2\pi E}{(1+E)^2 + \sqrt{(1+E)^4 - 8E^2}} \quad \text{if} \quad E \in [0, \frac{1}{2}],
\]

\[
d_2(E) = \frac{\pi}{2E} T_0 \left(\sqrt{ET_0^2 + (1+E^2)T_0 + E - T_0\sqrt{2E}} \right)^2 \quad \text{if} \quad E \in \left[\frac{1}{2}, E_0\right[,\n\]

\[
d_3(E) = \frac{\pi E}{\left(\sqrt{1+E^2} + E\right)^2} \quad \text{if} \quad E \in [E_0, 1].
\]

The optimality of \(\mathcal{P}_E \) for all \(E \) on each interval \([0, 1/2], [1/2, E_0[, [E, 1]\) implies the continuity of \(d(E) \) on \([0, 1]\). It is easy to verify that \(d_1(1/2) = d_2(1/2) = \)
\[\pi/4 \text{ and } d_2(E_0) = d_3(E_0) = \pi E_0/\left(\sqrt{1 + E_0^2} + E_0\right)^2. \] We show that \(d(E) \) is increasing on \([0, 1/2]\) and decreasing on \([1/2, 1]\). For \(E \in [0, \frac{1}{2}] \), we get
\[
d_1'(E) = \frac{2\pi(1 - E^2)}{\sqrt{(E + 1)^4 - 8E^2} \left(1 + 2E + E^2 + \sqrt{(E + 1)^4 - 8E^2}\right)} > 0
\]
and for \(E \in [E_0, 1]\),
\[
d_3'(E) = \frac{\pi\left(\sqrt{1 + E^2} - 2E\right)}{\sqrt{1 + E^2} \left(\sqrt{1 + E^2} + E\right)^2} < 0.
\]
In the case of Theorem 5, we have \(s_2(E) = 2E/f(T_0) \) and \(d_2(E) = (\pi/(2E))f^2(T_0) \).

Since \(T_0 = T_0(E) \) is a single root of (13), \(T_0(E) \) is differentiable at \(E \in [1/2, E_0[\)
and we get
\[
d_2'(E) = \frac{\pi}{2E^2} \left(2Ef(T_0)f'(T_0)dT_0/dE - f^2(T_0)\right).
\]
As \(f'(T_0) = 0 \), we obtain \(d_2'(E) < 0 \).

References

Thierry Gensane: LMPA J. Liouville, B.P. 699, F-62228 Calais, Univ Lille Nord de France, F-59000 Lille, France
E-mail address: gensane@lmpa.univ-littoral.fr

Pascal Honvault: LMPA J. Liouville, B.P. 699, F-62228 Calais, Univ Lille Nord de France, F-59000 Lille, France
E-mail address: honvault@lmpa.univ-littoral.fr