Golden Sections of Triangle Centers in the Golden Triangles

Emmanuel Antonio José García and Paul Yiu

Abstract. A golden triangle is one whose vertices are among the vertices of a regular pentagon. There are two kinds of golden triangles, short and tall, which are isosceles triangles with vertical angles 108° and 36° respectively. We consider some basic triangle centers of a short and tall golden triangles sharing one vertex and with the same circumcircle, and exhibit pairs of basic triangle centers divided in the golden ratio by another triangle center.

As is well known, the golden ratio naturally occurs in the regular pentagon, as the ratio of the length of a diagonal d and a side a: $\varphi := \frac{d}{a} = \frac{1}{2}(\sqrt{5} + 1)$. The intersection of two diagonals divides each in the golden ratio. If $ABCDE$ is a regular pentagon, and the diagonals AD and BE intersect at P (see Figure 1), then

$$\frac{BE}{BP} = \frac{BP}{PE} = \varphi, \quad \frac{DA}{DP} = \frac{DP}{PA} = \varphi.$$

For later use, we note the following simple trigonometric ratios from Figure 1:

$$\cos 36^\circ = \frac{d/2}{a} = \frac{\varphi}{2}, \quad \sin 18^\circ = \frac{a/2}{d} = \frac{1}{2\varphi}.$$

Given a regular pentagon, the subtriangles with vertices among those of the pentagon are all isosceles. They fall into two types:
(i) those with three adjacent vertices of the pentagon have angles 108°, 36°, 36°, which we call short golden triangles,
(ii) those with only two adjacent vertices of the pentagon have angles 36°, 72°, 72°, which we call *tall golden triangles*.

In this note we consider golden sections in the two kinds of golden triangles. For purpose of comparison, we consider a pair of short and tall golden triangles inscribed in the same regular pentagon $ABsBtCtCs$ (see Figure 2). The short golden triangle $Ts := ABsCs$ has sides d, a, a; the tall golden triangle $Tt := ABtCt$ has sides a, d, d. They share the same circumcenter O. Denote by R their common circumradius. Note that the areas $\Delta_i, i = s, t$, of the golden triangles are in the golden ratio:

$$\frac{\Delta_t}{\Delta_s} = \frac{\frac{1}{2} ad \sin 72°}{\frac{1}{2} a^2 \sin 108°} = \frac{d}{a} = \varphi.$$

For $i = s, t$, since the golden triangle Ti is isosceles, its triangle centers are all on the (common) perpendicular bisector of the side B_iC_i. We shall call this the *center line* of the golden triangles; it contains the midpoints Fi of B_iC_i (see Figure 3).

Here are some simple constructions of the basic triangle centers of Ts and Tt.

1. The incenter Is of Ts is the intersection of the center line with the perpendicular of $BsBt$ at Bs; it is also the reflection of O in the side $BsCs$. From this, the inradius of Ts is

$$r_s = FSIs = OFs = R \cos 72° = \frac{R}{2\varphi}.$$
(2) The incenter \(I_t \) of \(T_t \) is the intersection of the diagonals \(B_tC_s \) and \(C_tA_s \). It is also the reflection of \(A \) in the side \(B_sC_s \). From this, the inradius of \(T_t \) is

\[
r_t = \frac{a}{2} \tan 36^\circ = R \sin 36^\circ \tan 36^\circ = R \cdot \frac{\sin^2 36^\circ}{\cos 36^\circ}
\]

\[
= R \cdot \frac{4 - \phi^2}{2\phi} = \frac{R}{2}(3\phi - 4).
\]

(3) Let \(H_s \) be the orthocenter of \(T_s \). Clearly \(\angle H_sOB_s = \angle I_sOB_s = 72^\circ \). Since \(H_s \) is the isogonal conjugate of \(O \) in \(T_s \), \(\angle H_sB_sO = 2\angle I_sB_sO = 2 \cdot 36^\circ = 72^\circ \). Therefore, triangle \(H_sB_sO \) is a (tall) golden triangle, and

\[
\frac{OH_s}{OB_s} = \frac{d}{a} = \phi \implies OH_s = \phi R.
\]

Also, by the angle bisector theorem,

\[
\frac{H_sI_s}{I_sO_s} = \frac{B_sH_s}{B_sO_s} = \phi.
\]

This shows that \(I_s \) divides \(H_sO \) in the golden ratio.

Since \(B_sA \) bisects angle \(H_sB_sI_s \), the same reasoning shows that \(A \) divides \(H_sI_s \) in the golden ratio.

(4) In the tall golden triangle \(T_t \), the orthocenter \(H_t \) is the intersection of the center line with the perpendicular to \(B_tA_t \) at \(B_t \). Note that \(B_tH_t = 2R \cos 72^\circ = 2R \cdot \frac{\phi}{2} = R \).

Since \(H_t \) is the isogonal conjugate of \(O \) in \(T_t \), by the angle bisector theorem,

\[
\frac{OI_t}{I_tH_t} = \frac{B_tO}{B_tH_t} = \phi.
\]

Therefore, \(I_t \) divides \(OH_t \) in the golden ratio.

(5) Since \(O \) and \(I_t \) are the reflections of \(I_s \) and \(A \) in \(B_sC_t \), \(OI_t = AI_s \), and

\[
\frac{I_sO}{OI_t} = \frac{I_sO}{AI_s} = \phi.
\]

Therefore, \(O \) divides \(I_sI_t \) in the golden ratio.

(6) In the tall golden triangle, \(O \) divides \(AH_t \) in the golden ratio.

\[
\frac{AH_t}{AO} = \frac{2 \cdot R \cos 36^\circ}{R} = 2 \cos 36^\circ = \phi.
\]

We summarize these results in the following proposition.

Proposition 1. Let \(T_i, \ i = s, t \) be golden triangles sharing a common vertex \(A \) and the same circumcircle with center \(O \). Let \(H_i \) and \(I_i \) denote the orthocenter and incenter of \(T_i \).

(a) The incenter \(I_i \) divides \(H_iO \) or \(OH_i \) in the golden ratio, according as \(i = s, t \).

(b) The circumcenter \(O \) divides each of \(I_sI_t \) and \(AH_t \) in the golden ratio.

(c) \(A \) divides \(H_sI_s \) in the golden ratio.
Some observations by Nikolaos Dergiades:
(i) \(O\) is the midpoint of \(I_sH_t\).
(ii) If \(A'\) is the antipode of \(A\) on the circumcircle, the triangles \(I_sH_sB_s\) and \(OB_sA'\) are similar to \(T_s\), and since \(I_sB_s = OB_s = R\), we have \(B_sH_s = B_sA' = R\phi\).
(iii) The triangle \(I_sH_sB_s\) has a right angle at \(B_s\), and since \(I_sH_s = I_sB_s\), \(I_s\) is the midpoint of \(H_sI_t\).
(iv) The segments \(OI_s = R\phi\), \(I_sB_s = R\), \(B_sH_s = R\phi\) are in geometric progression (with common ratio \(\phi\)). Since \(\phi = 1 + \frac{1}{\varphi}\), we have \(B_sH_s = B_sI_s + OI_s\). This means that the circles \(B_s(H_s), I_s(H_s)\) and \(O(I_s)\) are concurrent at a point \(D\) which lies on the line \(OB_s\) (see Figure 4).

![Figure 4](image-url)

For \(i = s, t\), the incircle of \(T_i\) is tangent to the side \(B_tC_i\) at its midpoint \(F_i\). Since this midpoint also lies on the nine-point circle of \(T_i\), it is the Feuerbach point of \(T_i\). The nine-point circle of \(T_i, i = s, t\), also contains the midpoints \(M_{i,b}, M_{i,c}\) of the sides \(AC_i\) and \(AB_i\).

Proposition 2. (a) \(F_s\) divides \(F_tA\) in the golden ratio.
(b) The incenter \(I_t\) divides \(F_sF_t\) in the golden ratio.

Proof. (a) Let \(P\) be the intersection of the diagonals \(AC_t\) and \(B_tC_s\) (see Figure 3). Since \(B_tC_s\) and \(B_tC_t\) are parallel,

\[
\frac{F_tA}{F_tF_s} = \frac{C_tA}{C_tP} = \varphi.
\]

Therefore, \(F_s\) divides \(F_tA\) in the golden ratio.

(b) Since \(I_t\) is the intersection of the diagonals \(B_tC_t\) and \(B_tC_s\), \(\frac{F_sI_s}{I_tF_t} = \frac{B_tC_s}{B_tC_t} = \varphi.\)
Proposition 3. (a) For the short golden triangle T_s with nine-point center N_s, the incenter I_s divides F_sN_s in the golden ratio.

(b) For the tall golden triangle T_t, the nine-point center N_t divides F_tO in the golden ratio (See Figure 5).

Proof. (a) The inradius of T_s is $r_s = \frac{R}{2\phi}$. Therefore, $\frac{F_sN_s}{F_tN_s} = \frac{r_s}{R} = \phi$, and I_s divides F_sN_s in the golden ratio.

(b) $F_tO = R\cos36^\circ = \frac{R}{2} \cdot \phi$. Therefore, $\frac{F_tO}{F_tN_t} = \phi$, and N_t divides F_tO in the golden ratio.

Proposition 4. For $\{i,j\} = \{s,t\}$, the nine-point center N_i of T_i is the reflection of F_j in the center O.

Proof. (a) Since I_s is the reflection of O in B_sC_s,

\[OF_s = F_sI_s = r_s = \frac{R}{2\phi},\]

\[ON_s = OF_s + F_sN_s = \frac{R}{2\phi} + \frac{R}{2} = \frac{R}{2} \left(\frac{1}{\phi} + 1 \right) = R \cdot \frac{\phi}{2} = R\cos36^\circ = F_tO.\]

Therefore, N_s is the reflection of F_t in O.

(b) Since $N_t - F_t = N_s - F_s$,

\[N_t = N_s - F_s + F_t = 2 \cdot O - F_t - F_s + F_t = 2 \cdot O - F_s\]

is the reflection of F_s in O.

Therefore, the nine-point center N_s is the antipode of F_t on the circle, center O, passing through F_t, which is the inscribed circle of the regular pentagon. It follows that $\angle N_sM_s,b F_t$ and $\angle N_sM_s,c F_t$ are right angles. This means that $F_t M_s,b$ and $F_t M_s,c$ are tangents to the nine-point circle of T_s at M_s,b and M_s,c respectively (see Figure 6). The line $F_t M_s,b$ passes through M_t,b, which divides $F_t M_s,b$ in the
golden ratio. Similarly, \(F_t M_{s,c} \) is the tangent at \(M_{s,c} \) and is divided in the golden ratio by \(M_{t,c} \).

The same reasoning also leads to the following.

(i) The points \(M_{s,b}, F_s, M_{t,c} \) are collinear, and \(F_s \) divides \(M_{s,b} M_{t,c} \) in the golden ratio. Furthermore, the line containing them is tangent to the nine-point circle of \(T_t \) at \(M_{t,c} \).

(ii) The points \(M_{s,c}, F_s, M_{t,b} \) are collinear, and \(F_s \) divides \(M_{s,c} M_{t,b} \) in the golden ratio. Furthermore, the line containing them is tangent to the nine-point circle of \(T_t \) at \(M_{t,b} \).

We conclude this note with a few more division in the golden ratio with points in Figure 5. The simple proofs are omitted.

For \(i = s, t \), let \(F'_i \) be the antipode of \(F_i \) on the nine-point circle of \(T_i \). Then

(a) \(A \) divides \(F'_s N_s \) in the golden ratio,
(b) \(F'_t \) divides each of the segments \(A N_t \) and \(F_t N_s \) in the golden ratio,
(c) \(O \) divides \(F'_s F_t \) in the golden ratio,
(d) \(I_s \) divides \(F'_s I'_t \) in the golden ratio.

Statement (d) follows from Proposition 2(b) and a translation by \(R \) along the center line.

Figure 7 summarizes the golden sections in this note, each indicated by a longer solid segment followed by a shorter dotted segment. The endpoints and the division points are indicated on the “center line”.

References

Emmanuel Antonio José García: CEDI Bilingual School, Camila Henríquez Ureña, 20, Santo Domingo, Dominican Republic.
E-mail address: emmanuelgeogarcia@gmail.com

Paul Yiu: Department of Mathematical Sciences, Florida Atlantic University, 777 Glades Road, Boca Raton, Florida 33431-0991, USA
E-mail address: yiu@fau.edu