Problem A1 Let \(n \) be a positive integer. How many ways are there to write \(n \) as a sum of positive integers,

\[
n = a_1 + a_2 + \cdots + a_k,
\]

with \(k \) an arbitrary positive integer and \(a_1 \leq a_2 \leq \cdots \leq a_k \leq a_{k+1} \)?

Solution There are \(n \) ways. It suffices to show that if \(k \) is an integer, \(1 \leq k \leq n \), there is exactly one way to write \(n \) as a sum of \(k \) integers of the specified type. By the quotient algorithm, \(n = kq + r \) for some \(r \), \(0 \leq r \leq k - 1 \). If \(r = 0 \), we can take \(a_1 = a_2 = \cdots = a_k = q \) and write \(n = a_1 + \cdots + a_k \). If \(0 < r \leq k - 1 \), we can take \(a_1 = \cdots = a_{k-r} = q, a_{k-r+1} = \cdots = a_k = q + 1 \) to get \(a_1 + \cdots + a_k = (k-r)q + r(q+1) = n \). This shows there is at least one way to decompose \(n \) as specified for each \(k \). To see this is the only such way, notice that if \(n = a_1 + a_2 + \cdots + a_k \) with \(a_1 \leq a_2 \leq \cdots \leq a_k \leq a_{k+1} \leq a_1 + 1 \), then we either have \(a_1 = a_2 = \cdots = a_k \) or there is \(\ell, 1 < \ell < k \) such that \(a_1 = a_2 = \cdots = a_{\ell} < a_{\ell+1} = \cdots = a_k = a_1 + 1 \). In the former case \(n = k a_1 \), so that we are in the case \(r = 0, q = a_1 \), and the decomposition is the one given for that case. In the latter,

\[
n = \ell a_1 + (k - \ell)(a_1 + 1) = k a_1 + (\ell - k)
\]

so that we are in the case \(r = k - \ell > 0 \), and the decomposition coincides with the previous one. This proves the uniqueness of the decomposition for each \(k \).