It is perhaps easier to consider the cards as being in a fixed order and the counting to be a randomization of the given sequence (18 ones, 17 twos, 17 threes).

The number of sequences is \(\frac{52!}{18!17!17!} = 99,579,591,790,845,629,463,000 \).

Suppose that \(i \) ones, \(j \) twos and \(k \) threes are in specified positions with the same labels (forbidden positions).

The number of such sequences is \(P (i, j, k) = \binom{4}{i} \binom{4}{j} \binom{4}{k} \frac{(52 - i - j - k)!}{(18 - i)! (17 - j)! (17 - k)!} \).

By the principle of inclusion-exclusion, the number of winning sequences is

\[
\sum_{i=0}^{4} \sum_{j=0}^{4} \sum_{k=0}^{4} \binom{4}{i} \binom{4}{j} \binom{4}{k} \frac{(52 - i - j - k)!}{(18 - i)! (17 - j)! (17 - k)!} (-1)^{i+j+k} = 813,069,712,393,655,972,160,
\]

and the probability of winning is

\[
\left(\frac{52!}{18!17!17!} \right)^{-1} \sum_{i=0}^{4} \sum_{j=0}^{4} \sum_{k=0}^{4} \binom{4}{i} \binom{4}{j} \binom{4}{k} \frac{(52 - i - j - k)!}{(18 - i)! (17 - j)! (17 - k)!} (-1)^{i+j+k} = \frac{24,532,967,512}{3,004,641,364,725} \approx 0.008165
\]