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Conics Associated with a Cevian Nest

Clark Kimberling

Abstract. Various mappings in the plane 6f ABC' are defined in the context

of a cevian nest consisting 8 ABC, a cevian triangle, and an anticevian trian-

gle. These mappings arise as Ceva conjugates, cross conjugates, and cevapoints.
Images of lines under these mappings and others, involving trilinear and conic-
based poles and polars, include certain conics that are the focus of this article.

1. Introduction

SupposeL is a line in the plane oNABC, but not a sidelineBC, C A, AB,
and suppose a variable poifjttraverses.. The isogonal conjugate @J traces a
conic called the isogonal transform bf which, as is well known, passes through
the verticesA, B, C. In this paper, we shall see that for various other transfor-
mations, the transform df is a conic. These include Ceva and cross conjugacies,
cevapoints, and pole-to-pole mappihgket

P=pi:p2:p3 (1)
be a point not on a sideline oA ABC. Suppose
U=uj:uzy:uzs and V =y : vy : v3 (2)
are distinct points ol.. ThenL is given parametrically by
Q: = up + vt : ug + vot : ugz + v3t, —oo <t < oo, 3)

whereQ), := V. The curves in question can now be represented by the for¢)
(or P; x @), wherex represents any of the various mappings to be considé&iad
any such curve, a parametric representation is given by the form

xl(t) : 512‘2(75) : x3(t),

Publication Date: October 18, 2001. Communicating Editor: Peter Yff.

1The cevian triangle of a poirf® not on a sideline oft BC is the triangled’ B'C’, where A’ =
PANBC,B'= PBNCA,CB = PCnN AB. The nameevian (pronounced cheh’vian) honors
Giovanni Ceva (pronounced Chay’'va). We use a lower case c in adjectives sartfcasan (cf.
nonabelian) and a capital when the name stands alone, &g conjugate. The nameanticevian
derives from a special case called Hrgicomplementary triangle, so named because its vertices are
the anticomplements oA, B, C.

2Throughout, coordinates for points are homogeneous trilinear coordinates.
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where the coordinates are polynomialg inaving no common nonconstant poly-
nomial factor. The degree of the curve is the maximum of the degrees of the poly-
nomials. When this degree is 2, the curve is a conic, and the following theorem
(e.g. [5, pp. 60-65]) applies.

Theorem 1. Suppose a point X = x; : x5 : x3 iSgiven parametrically by

vy = dit* +eit+ fi (4)
To = d2t2+€2t+f2 (5)
z3 = dst’ +est+ fs, (6)
where the matrix
di e fi
M=\ da ex fo
d3 e3 f3
isnonsingular with adjoint (cofactor) matrix
Dy Dy Djs
M#*=| E, E, Fj
F F Fj

Then X lies on the conic:

(Bro+ Ey3 + E37)* = (D1av+ Doff + Dgy)(Fra+ Faf + Fyy). (7)

Proof. SinceM is nonsingular, its determinantis nonzero, and/~! = %M#.

Let

X1 t2
X=| x and T = t ,
I3 1

so thatX = MT andM~'X = T. This second equation is equivalent to the
system

Dix1 + Doxys + Dsxs = 5t?
FEix1 + FEsreg + FEsx3 = 0t
Fxy + Foxo + Fixg = 0.

The equal quotientst? /6t andét/J yield

Dixy + Doxo + D3xs  Eray + Eqwg + Esus
Eixy + Esxo + Esxy  Fixy + Foxg + Fyws

g

For a first example, suppoge = ¢ : g2 : ¢3 iS a point not on a sideline of
ANABC, and letL be the linep o + ¢28 + g3y = 0. The P-isoconjugate of), is
(e.g., [4, Glossary]) the point

1 1 1

p1q1 ' p2q2 ' P3qg'

PxQ =
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The method of proof of Theorem 1 shows that fhiésoconjugate of. (i.e., the set
of pointsP « R for R on L) is the circumconic

ﬂ + ﬂ + ﬁ =0.
pia  p2f p3y
We shall see that the same method applies to many other configurations.

2. Cevian nests and two conjugacies

A fruitful configuration in the plane oNABC' is the cevian nest, consisting
of three trianglesii, T, T3 such that7; is a cevian triangle of’}, and T3 is a
cevian triangle off5. In this article,7, = AABC, so thatT] is the anticevian
triangle of some poinP, andTj is the cevian triangle of some poi@t. It is well
known (e.g. [1, p.165]) that if any two pairs of such triangles are perspective pairs,
then the third pair are perspective dlséccordingly, for a cevian nest, given two
of the perspectors, the third may be regarded as the value of a binary operation
applied to the given perspectors. There are three such pairs, hence three binary
operations. As has been noted elsewhere ([2, p. 203] and [3, Glossary]), two of
them are involutory: Ceva conjugates and cross conjugates.

2.1 Ceva conjugate. The P-Ceva conjugate of (), denoted byP©Q, is the per-
spector of the cevian triangle &f and the anticevian triangle ¢f; for P = p :

p2 1 p3and@ = q1 : 2 : g3, we have
q1 q2 q3 q1 q2 q3 q1 q2 q3
POQ=qi(——+ =+ =) iga(-— — =+ =) rgs(-— + — — ).
b1 b2 p3 b1 b2 p3 b1 b2 p3

Theorem 2. Suppose P, U, V, @, are pointsasin (1)-(3); that is, J; traverses line
UV. Thelocus of P©Q); isthe conic

o B2 42 1 1 1 1 1 1
e + Pr—(—+—)ya—(—+—)af =0, (8)
P1q1  Pp2q2  P34gs3 P2q3  P3q2 p3q1  Pi1gs pP1q2  P2q1
where Q := ¢; : g2 : g3, thetrilinear pole of theline UV, is given by
1 1 1
q1:4q2:43 = : :

UgU3 — U3V UV] — UIV3 ULV — UV
This conic* passes through the vertices of the cevian triangles of P and Q.

Proof. First, it is easy to verify that equation (8) holds fer 3 : + equal to any of
these six vertices:

O:po:ps, pr:0:p3, pr:p2:0, 0:qa:q3, q1:0:¢q3, q1:q2:0 (9)

Speter Yff has observed that in [1], Court apparently overlooked the factibaBC' and any
inscribed triangle are triply perspective, with perspectdy®3, C. For these cases, Court’s result is
not always true. It seems that he intended his inscribed triangles to be cevian triangles.

“The general equation (8) for the circumconic of two cevian triangles is one of many interesting
equations in Peter Yff’s notebooks.
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A conic is determined by any five of its points, so it suffices to prove that the six
vertices are of the forn?©(Q),. Puttingz; = 0in (4) gives roots

P —61:|:x/€%—4d1f1 (10)

2d,
where
v v v
di = vi(——+ =+ =), (11)
b1 b2 Dp3
2uv U1V + U2V U1V3 + uzv
61:_11+12 21+13 31’ (12)
b1 b2 b3
U1 u9g us
f1 = ul(———l-——l-—). (13)
b1 b2 b3

The discriminant in (10) is a square, afjgimplifies:

¢ _ Z€1P2P3qaqs + (p3g2 — p2g3)

¢ 2d1p2p3q2q3 '
If the numerator is-e;papsq2q3 + (p3g2 — pP2g3), then (5) and (6), and substitutions
for do, ea, fo, ds, e3, f3 obtained cyclically from (11)-(13give x, /x5 = pa/ps, SO
that PO©Q;, = 0 : p2 : p3. On the other hand, if the numerator+is; p2p3qg2q3 —
(p3q2 — p2qs), thenzse /x3 = g2 /q3 and POQ, = 0 : ¢2 : q3. Likewise, the roots
t, andt, of (5) and (6) yield a proof that the other four vertices in (9) are of the
form POQ;. O

Corollary 2.1. Suppose P = py : po : pgisapointand L given by i + €56 +
l3y = 0 isaline. Suppose the point @, traverses L. The locus of POQ; is the

conic

(10?2 0552 p3~? 14 / 14 14 / 14
T A e SR VY - § PO S )
b1 b2 b3 b2 P3 b3 D1 b1 P2

Proof. Let U, V' be distinct points ori, and apply Theorem 2. O

Corollary 2.2.  The conic (14) is inscribed to AABC if and only if the line
L = UV isthetrilinear pole of P.

Proof. In this case/; : ¢3 : ¢35 = 1/p1 : 1/p2 : 1/ps, so thatP = Q. The
cevian triangles indicated by (9) are now identical, and the six pass-through points
are three tangency points. O

One way to regard Corollary 2.2 is to start with an inscribed conitt follows
from the general equation for such a conic (e.g., [2, p.238]) that the three touch
points are of the formd : ps : p3, p1 : 0: p3, p1 : P2 : 0, for someP = py : po : p3.
ThenT is the locus ofP©Q); asQ; traversed..

Example 1. Let P = centroid and?) = orthocenter. Then lin&V is given by
(cos A)ac + (cos B)B + (cos C)y = 0,

and the conic (8) is the nine-point circle. The same is trué¥et orthocenter and
@ = centroid
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Example 2. Let P = orthocenter and) = Xgus, the trilinear pole of the Euler
line, so thatUV is the Euler line. The conic (8) passes through the vertices of
the orthic triangle, an&y, X113, X155, X193, Which are theP-Ceva conjugates of
Xy, X309, X3, Xo, respectivel;?.

Figure 1

2.2 Cross conjugate. Along with Ceva conjugates, cevian nests proffer cross con-

jugates. SUpposE = p; : po : p3 andQ = ¢ : ¢o : g3 are distinct points, neither

lying on a sideline oA ABC. Let A’ B’C’ be the cevian triangle a@. Let
A"=PA'NB'C', B"=PB'nC'4A, C"=PC'NnAB,

so thatA” B”C" is the cevian triangle (im\A'B’'C") of P. Thecross conjugate

P ® Q is the perspector oh ABC and A A”B”C”. It has coordinates

a1 . q2 . a3
b1 p2  p3 " _ P24 P3 P17 _ P34 PLy P2°
q1 + q2 + q3 q2 + 93 + q1 q3 + q1 + q2

It is easy to verify directly tha® is a conjugacy; i.e.P ® (P® Q) = @, or to
reach the same conclusion using the identity

XoP=((X"oP ),

where( )~! signifies isogonal conjugation.

The locus ofP ® @ is generally a curve of degrée However, on switching
the roles ofP and (), we obtain a conic, as in Theorem 3. Specifically,det=
q1 : g2 : g3 remain fixed while

P =wu +vit:ug +wvot i ug+v3t, —oo <t < oo,
ranges through the lin€V.

5Indexing of triangle centers is as in [3].
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Theorem 3. Thelocus of the P, ® @ isthe circumconic

B+ 27+ 2+ Byt (B4 Byag o, 1s)
q2 q3 q3 q1 q1 g2

whereline UV isrepresented as
proc+ paf + p3y = (ugu3 — usva)a + (uzvr — u1v3)f + (urve — ugvy)y = 0.

Proof. Following the proof of Theorem 1, let

U U U v
——1+—2+—3,U/:——1+
q1 q2 q3 q1

(9 v
Y2 U8
q2 q3

u) =
and similarly foru,, uf, vy, v5. Then

! ! ! ! ! !
d1 = qvpus, e1 = q1(upvs + uzvy), fi = qrugug,

and similarly ford,, e;, f;, i = 2,3. The nine termsi;, e;, f;, yield the nine
cofactorsD;, E;, F;, which then yield) for the coefficients of?, 5%, v2 in (7) and
the other three coefficients as asserted in (15). d

Example 3. Regarding the conic (15), suppose= p; : p2 : ps3 iS an arbitrary
triangle center and is an arbitrary circumconi¢/a + m/3 + n/v = 0. Let

Q = qg1:@:q¢
1 1 1

p1(—pil + pam +psn) * pa(—pam + psn+pil)  ps(—psn+ pil + pam)

For P, ranging through the lind, given bypia + pso3 + p3y = 0, the locus of
P, ® QQ is thenI, since

Py P2 DL Ps P2 DLy pyin

g2 43 43 q1 q1 Q2
In other words, giver® and L, there existg) such that? ® () ranges through any
prescribed circumconic. In facf) is the isogonal conjugate @f©)L’, whereL’
denotes the pole of ling. Specific cases are summarized in the following table.

(P lQ ¢ | pass-through pointsy;, for i = |
XX |1 88,100, 162,190 (Steiner ellipse)
X | Xo |b+ec 80, 100, 291 (ellipse)
X1|Xs |alb+c) 101, 190, 292 (ellipse)
X1 | X57 |a 74,98,99,...,111,112, ...(circumcircle)
X; | Xg3 |sin24 109, 162, 163, 293 (ellipse)
X1 | Xi00 | b—c 1,2, 28,57, 81, 88,89, 105, ...(hyperbola)
X1 | X101 | a(b—c)(b+c—a)|6,9,19,55,57,284, 333, (hyperbola)
X1 | X190 | a(b—c) 1,6, 34,56, 58, 86, 87, 106, ...(hyperbola)
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3. Polesand polars

In this section, we shall see that, in addition to mappings discuss&] aertain
mappings defined in terms of poles and polars are nicely represented in terms of
Ceva conjugates and cross conjugates

We begin with definitions. Suppos€B’C’ is the cevian triangle of a poir?
not on a sideline ofAABC. By Desargues’s Theorem, the poims” N B(C’,
CANC'A,AB N A’B’" are collinear. Their line is th&ilinear polar of P.
Starting with a lineL, the steps reverse, yielding ttelinear pole of L. If L is
given byxza + yf + zy = 0 then the trilinear pole of. is simply1/z : 1/y : 1/z.

Supposd' is a conic andX is a point. For eact/ onT', let V' be the point other
thanU in which the lineU X meetsl’, and letX’ be the harmonic conjugate &f
with respect td/ andV. As U traversed’, the pointX’ traverses a line, the polar
of X with respect td, or I'-based polar of X. Here, too, as with the trilinear
case, for given lind., the steps reverse to define théased pole of L.

In §2, two mappings were defined in the context of a cevian nest. We return
now to the cevian nest to define a third mapping. Suppdse p : ¢ : r and
X = x : y : z are distinct points, neither lying on a sideline 6fABC. Let
A" B"C" be the anticevian triangle of. Let

A'=PA"NBC, B'=PB'NCA, C' =PC"NAB.
The cevapoint of P and X is the perspectorR, of trianglesABC and AB'C’.
Trilinears are given by
J— 1 . 1 . 1
Cqztry rr+pz opy+qx

It is easy to verify thatP = RO X.
The general conit' is given by the equation

(16)

ua? + vB% + wy? 4 2pBy + 2gya + 2raf = 0,
and thel'-based polar o = z : y : z is given (e.g., [5]) by
(ux +ry+ qz)a + (vy + pz +rz)5 + (wz + gz + py)y = 0. a7

Example 4. Let I" denote the circumconip/« + ¢/8 + r/v = 0, that is, the
circumconic having as pivot the poift = p : ¢ : ». TheT'-based polar ofX is
the trilinear polar of the cevapoint @ and X, given by

(qgz + ry)a+ (re+ pz)B8 + (py + qz)y = 0.
In view of (16), (trilinear polar ofX') = (I'-based polar oX© P).

Example 5. LetT" denote conic determined as in Theorem 2 by poittand Q.
The conic is inscribed IMABC if and only if P = @, and in this case, the
I"-based polar o is given by

1 x z 1 /xz z 1 /z z
O
p p q r qg\p q T T\p ¢q¢ T
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In other words(T'-based polar ofX') = (trilinear polar of X ® P). In particular,
choosingP = X7, we obtain the incircle-based polar &f:

f(A,B,Cla+ f(B,C,A)f+ f(C,A,B)y =0,

where

2 A
sec 2

f(A,B,C) =

—zcos2 4 +ycos? B 4 zcos? &
Suppose now thdt is a conic and_ a line. As a point

X =p1+aqt:p2+qet:ps+qgst (18)
traversesl, a mapping is defined by the trilinear pole of thidbased polar ofX.
This pole has trilinears found directly from (17):

111
gi1(t) " g2(t) " gs(t)’

whereg; (t) = u(p1 + qit) + r(p2 + g2t) + q(ps + gst), and similarly forg(¢) and
g3(t). The same pole is given by

92(t)g3(t) = g3(t)g1(t) : g1(t)ga(?), (19)

and Theorem 1 applies to form (19). With certain exceptions, the resulting conic
(7) is a circumconic; specifically, iig + rg2 + qg3 # 0, theng; (¢) has a root for
which (19) is vertex4, and similarly for verticed3 andC.

Example6. ForP = u : v : w, letI'(P) be the circumconia Sy + vya+waf =
0. Assume that at least one point Bf P) lies inside AABC; in other words,
assume thal' (P) is not an ellipse. L (P) be the conig

ua? + vt +wy? =0. (20)

Foreachx : 3 : v onthe lineua+v3+wy = 0 and inside or on a side A ABC,
letP=p:q:r,withp>0,q>0,r >0, satisfy

a:p2, ﬁ:q27 7:737

and define
\/]_3::\/1_9:\/6:\/7_“ (21)
and
Py:=—p:q:\Vr, Pp:=\p:—q:r, Pc::\/ﬁ:\/a:—\/izz)

Each point in (21) and (22) satisfies (20), and conversely, each point satisfying
(20) is of one of the forms in (21) and (22). Therefore, the conic (20) consists

SLet & = vwa® + wub® + uvc®. Conic (20) is an ellipse, hyperbola, or parabola according as
d >0, &< 0,0rd = 0. Yff[6, pp.131-132], discusses a class of conics of the form (20) in
connection with self-isogonal cubics and orthocentric systems.
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of all points as in (21) and (22). Constructibier v/P are known, and points
P., Py, P are constructible as harmonic conjugates involwng and vertices
A, B,C; e.g., P, is the harmonic conjugate @ with respect toA and the point
BC n AP. Now suppose thak is a line, given byla + mf3 + ny = 0. ForX
as in (18) traversing., we haveg (t) = u(p1 + ¢it), leading to nine amenable
coefficients in (4)-(6) and on to amenable cofactors, as indicated by

2 2
D1 =upiri, E1=—upiqir1, Fi1=ugiri,

wherer; = paq3 — p3ge. The nine cofactors and (7) yield this conclusion: the
I'-based pole o traverses the circumconic

14 m n
ua vl wy
For example, taking linewoe + v + wy = 0 to be the trilinear polar ofXjg
and L that of X;¢;, the conic (23) is the Steiner circumellipse. In this case,
the conic (20) is the hyperbola passing throughfor ¢ = 1,43,165,170, 365,
and 846. Another notable choice of (20) is given by = X;9s, which has
first trilinear (cos? B — cos? C)sin? A. Points on this hyperbola includ&; for
i =1,2,20,63,147,194,478, 488,616, 617, 627, and628.
Of course, for eactX = = : y : z on a conid’(P), the points

—0. (23)

—riYy:zZ, T:i-Y:z, XT:Y:—Z
are also o' (P), and if X also lies insideA ABC, thenX; /X2 lies onI'(P).

Example 7. LetT be the circumcircle, given by/a + b/3 + ¢/~ = 0, and letL
be the Brocard axis, which is the line passing through the pofgts- a : b : ¢
andX3 = cos A : cos B : cos C. Using notation in Theorem 1, we find

di =be, e =2ab*+%), fi=4a*bc
and
Dy = 8ab*c*(c? —b%), FEy = 4a*bc(b* — ¢?), Fy =2a3(c® —V?),

leading to this conclusion: the circumcircle-based pol& dfaversing the Brocard
axis traverses the circumhyperbola

a®® —c?) b2 —a?) = c(a®—b?)
o 6 v
namely, the isogonal transform of the trilinear polar of the Steiner point.

"The trilinear square root is constructed in [4]. An especially attractive construction of barycentric
square root in [7] yields a second construction of trilinear square root. We describe the latter here.
SupposeP = p : ¢ : rin trilinears; then in barycentrid? = ap : bq : cr, so that the barycentric
square root o is \/ap : v/bq : \/cr. Barycentric multiplication (as in [7]) by/a : Vb : \/c gives
a./p : by/q : cy/r, these being barycentrics for the trilinear square roaPgolvhich in trilinears is

N/ERVOERYAR
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