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Heron Triangles:
A Gergonne-Cevian-and-Median Perspective

K.R.S. Sastry

Abstract. We give effective constructions of Heron triangles by considering the
intersection of a median and a cevian through the Gergonne point.

1. Introduction

Heron gave the triangle area formula in terms of the sidesa, b, c:

(∗) � =
√

s(s − a)(s − b)(s − c), s =
1
2
(a + b + c).

He is further credited with the discovery of the integer sided and integer area tri-
angle (13,14,15;84). Notice that this is a non-Pythagorean triangle,i.e., it does
not contain a right angle. We might as well say that with this discovery he chal-
lenged us to determine triangles having integer sides and area,Heron triangles.
Dickson [3] sketches the early attempts to meet this challenge. The references
[1, 4, 5, 6, 7, 8, 10, 11] describe recent attempts in that direction. The present dis-
cussion uses the intersection point of a Gergonne cevian (the line segment between
a vertex and the point of contact of the incircle with the opposite side) and a median
to generate Heron triangles. Why do we need yet another description? The answer
is simple: Each new description provides new ways to solve, and hence to acquire
new insights into, earlier Heron problems. More importantly, they pose new Heron
challenges. We shall illustrate this. Dickson uses the name Heron triangle to de-
scribe one having rational sides and area. However, these rationals can always be
rendered integers. Therefore for us a Heron triangle is one with integer sides and
area except under special circumstances.

We use the standard notation:a, b, c for the sidesBC, CA, AB of triangle
ABC. We use the word side also in the sense of the length of a side. Furthermore,
we assumea ≥ c. No generality is lost in doing so because we may relabel the
vertices if necessary.
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2. A preliminary result

We first solve this problem: Suppose three cevians of a triangle concur at a point.
How does one determine the ratio in which the concurrence point sections one of
them? The answer is given by

Theorem 1 (van Aubel [2, p.163]). Let the ceviansAD, BE, CF of triangleABC
concur at the pointS. Then

AS

SD
=

AE

EC
+

AF

FB
.

Proof. Let [T ] denote the area of triangleT . We use the known result: if two trian-
gles have a common altitude, then their areas are proportional to the corresponding
bases. Hence, from Figure 1,
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Figure 1
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Figure 2

AS

SD
=

[ABS]
[SBD]

=
[ASC]
[SDC]

=
[ABS] + [ASC]
[SBD] + [SDC]

=
[ABS]
[SBC]

+
[ASC]
[SBC]

. (1)

But
AE

EC
=

[ABE]
[EBC]

=
[ASE]
[ESC]

=
[ABE] − [ASE]
[EBC] − [ESC]

=
[ABS]
[SBC]

, (2)

and likewise,
AF

FB
=

[ASC]
[SBC]

. (3)

Now, (1), (2), (3) complete the proof. �

In the above proof we used a property of equal ratios, namely, if
p

q
=

r

s
= k,

thenk =
p ± q

r ± s
. From Theorem 1 we deduce the following corollary that is impor-

tant for our discussion.

Corollary 2. In Figure 2, letAD denote the median, andBE the Gergonne cevian.

Then
AS

SD
=

2(s − a)
s − c

.
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Proof. The present hypothesis impliesBD = DC, andE is the point where the
incircle is tangent withAC. It is well - known thatAE = s − a, EC = s − c.

Now, Ceva’s theorem,
BD

DC
· CE

EA
· AF

FB
= 1, yields

AF

FB
=

s − a

s − c
. Then Theorem

1 upholds the claim of Corollary 2. �

In the case of a Heron triangle,a, b, c ands are natural numbers. Therefore,
AS

SD
=

2(s − a)
s − c

= λ is a rational ratio. Of course this will be true more generally

even if� is not an integer; but that is beside the main point. Also,a ≥ c implies
that0 < λ ≤ 2. Next we show how each rational numberλ generates an infinite
family, aλ−family of Heron triangles.

3. Description of λ−family of Heron triangles

Theorem 3 gives expressions for the sides of the Heron triangle in terms of
λ. At present we do not transform these rational sides integral. However, when
we specify a rational number forλ then we do expressa, b, c integral such that
gcd(a, b, c) = 1. An exception to this common practice may be made in the solu-
tion of a Heron problem that requiresgcd(a, b, c) > 1, in (D1) later, for example.

Theorem 3. Let λ be a rational number such that0 < λ ≤ 2. Theλ−family of
Heron triangles is described by

(a, b, c) = (2(m2 + λ2n2), (2 + λ)(m2 − 2λn2), λ(m2 + 4n2)),

m, n being relatively prime natural numbers such thatm >
√

2λ · n.

Proof. From the definition we have

2(s − a)
s − c

= λ or b =
2 + λ

2 − λ
(a − c).

If λ 	= 2, we assumea − c = (2 − λ)p. This givesb = (2 + λ)p. If λ = 2, then
we defineb = 4p. The rest of the description is common to either case. Next we
calculate

a = (2 − λ)p + c, s = c + 2p, and from (∗),

�2 = 2λp2(c + 2p)(c − λp). (4)

To render(a, b, c) Heron we must have(c + 2p)(c − λp) = 2λq2. There is no
need to distinguish two cases:2λ itself a rational square or not. This fact becomes

clearer later when we deduce Corollary 5. With the help of a rational number
m

n
we may write down

c + 2p =
m

n
q, and c − λp =

n

m
(2λq).

We solve the above simultaneous equations forp andc:

p =
m2 − 2λn2

(2 + λ)mn
· q, c =

λ(m2 + 4n2)
(2 + λ)mn

· q.
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This yields
p

m2 − 2λn2
=

q

(2 + λ)mn
=

c

λ(m2 + 4n2)
.

Sincep, q, c, λ, m, n are positive we must havem >
√

2λ · n. We may ignore the
constant of proportionality so that

p = m2 − 2λn2, q = (2 + λ)mn c = λ(m2 + 4n2).

These values lead to the expressions for the sidesa, b, c in the statement of The-
orem 3. Also,� = 2λ(2 + λ)mn(m2 − 2λn2), see (4), indicates that the area is
rational. �

Here is a numerical illustration. Letλ = 1, m = 4, n = 1. Then Theorem
3 yields (a, b, c) = (34, 42, 20). Heregcd(a, b, c) = 2. In the study of Heron
triangles often gcd(a, b, c) > 1. In such a case we divide the side length values by
the gcd to list primitive values. Hence,(a, b, c) = (17, 21, 10).

Now, supposeλ = 3
2 , m = 5, n = 2. Presently, Theorem 3 gives(a, b, c) =

(68, 91
2 , 123

2 ). As it is, the sidesb andc are not integral. In this situation we render
the sides integral (and divide by the gcd if it is greater than 1) so that(a, b, c) =
(136, 91, 123).

We should remember that Theorem 3 yields the same Heron triangle more than
once if we ignore the order in which the sides appear. This depends on the number
of ways in which the sidesa, b, c may be permuted preserving the constrainta ≥ c.
For instance, the(17, 21, 10) triangle above forλ = 1, m = 4, n = 1 may also
be obtained whenλ = 3

7 , m = 12, n = 7, or whenλ = 6
7 , m = 12, n = 7.

The verification is left to the reader. It is time to deduce a number of important
corollaries from Theorem 3.

Corollary 4. Theorem 3 yields the Pythagorean triangles(a, b, c) = (u2+v2, u2−
v2, 2uv) for λ =

2v
u

, m = 2, n = 1.

Incidentally, we observe that the famous generatorsu, v of the Pythagorean
triples/triangles readily tell us the ratio in which the Gergonne cevianBE intersects
the medianAD. Similar observation may be made throughout in an appropriate
context.

Corollary 5. Theorem 3 yields the isosceles Heron triangles(a, b, c) = (m2 +
n2, 2(m2 − n2),m2 + n2) for λ = 2.

Actually,λ = 2 yields(a, b, c) = (m2+4n2, 2(m2−4n2),m2+4n2). However,
the transformationm 
→ 2m, n 
→ n results in the more familiar form displayed in
Corollary 5.

Corollary 6. Theorem 3 describes the complete set of Heron triangles.

This is because the Gergonne cevianBE must intersect the medianAD at a
unique point. Therefore for all Heron triangles0 < λ ≤ 2. Suppose first we fix
λ at such a rational number. Then Theorem 3 gives the entireλ−family of Heron
triangles each member of which hasBE intersectingAD in the same ratio, that is
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λ. Next we varyλ over rational numbers0 < λ ≤ 2. By successive applications
of the preceding remark the claim of Corollary 6 follows.

Corollary 7. [Hoppe’s Problem] Theorem 3 yields Heron triangles(a, b, c) =
(m2 + 9n2, 2(m2 + 3n2), 3(m2 + n2)) having the sides in arithmetic progression

for λ =
m2

6n2
.

Here too a remark similar to the one following Corollary 5 applies. Corollaries
4 through 7 give us the key to the solution, often may be partial solutions of many
Heron problems: Just consider appropriateλ−family of Heron triangles. We will
continue to amplify on this theme in the sections to follow. To richly illustrate this
we prepare a table ofλ−families of Heron triangles. In Table 1,π denotes the
perimeter of the triangle.

Table 1. λ−families of Heron triangles

λ a b c π �
1 2(m2 + n2) 3(m2 − 2n2) m2 + 4n2 6m2 6mn(m2 − 2n2)

1/2 4m2 + n2 5(m2 − n2) m2 + 4n2 10m2 10mn(m2 − n2)

1/3 2(9m2 + n2) 7(3m2 − 2n2) 3(m2 + 4n2) 42m2 42mn(3m2 − 2n2)

2/3 9m2 + 4n2 4(3m2 − 4n2) 3(m2 + 4n2) 24m2 24mn(3m2 − 4n2)

1/4 16m2 + n2 9(2m2 − n2) 2(m2 + 4n2) 36m2 36mn(2m2 − n2)

3/4 16m2 + 9n2 11(2m2 − 3n2) 6(m2 + 4n2) 44m2 132mn(2m2 − 3n2)

1/5 2(25m2 + n2) 11(5m2 − 2n2) 5(m2 + 4n2) 110m2 110mn(5m2 − 2n2)

2/5 25m2 + 4n2 6(5m2 − 4n2) 5(m2 + 4n2) 60m2 60mn(5m2 − 4n2)

3/5 2(25m2 + 9n2) 13(5m2 − 6n2) 15(m2 + 4n2) 130m2 390mn(5m2 − 6n2)

4/5 25m2 + 16n2 7(5m2 − 8n2) 10(m2 + 4n2) 70m2 140mn(5m2 − 8n2)

3/2 4m2 + 9n2 7(m2 − 3n2) 3(m2 + 4n2) 14m2 42mn(m2 − 3n2)

4/3 9m2 + 16n2 5(3m2 − 8n2) 6(m2 + 4n2) 30m2 60mn(3m2 − 8n2)

5/3 2(9m2 + 25n2) 11(3m2 − 10n2) 15(m2 + 4n2) 66m2 330mn(3m2 − 10n2)

5/4 16m2 + 25n2 13(2m2 − 5n2) 10(m2 + 4n2) 52m2 260mn(2m2 − 5n2)

7/4 16m2 + 49n2 15(2m2 − 7n2) 14(m2 + 4n2) 60m2 420mn(2m2 − 7n2)

4. Heron problems and solutions

In what follows we omit the word “determine” from each problem statement.
“Heron triangles” will be contracted to HT, and we donot provide solutions in
detail.

A. Involving sides. A1. HT in which two sides differ by a desired integer.In fact
finding one such triangle is equivalent to finding an infinity! This is because they
depend on the solution of the so-called Fermat-Pell equationx2 − dy2 = e, where
e is an integer andd not an integer square. It is well-known that Fermat-Pell equa-
tions have an infinity of solutions(x, y) (i) whene = 1 and (ii) whene 	= 1 if there
is one. The solution techniques are available in an introductory number theory text,
or see [3].

HT in which the three sides are consecutive integers are completely given by
Corollary 7. For example,m = 3, n = 1 gives the (3,4,5);m = 2, n = 1,
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the (13,14,15), and so on. Here two sides differ by 1 and incidentally, two sides
by 2. However, there are other HT in which two sides differ by 1 (or 2). For
another partial solution, considerλ = 1 family from Table 1. Herea− c = 1 ⇐⇒
m2 − 2n2 = 1. m = 3, n = 2 gives the(26, 3, 25). m = 17, n = 12, the
(866,3,865) triangle and so on. We observe that 3 is the common side of an infinity
of HT. Actually, it is known thateveryinteger greater than 2 is a common side of
an infinity of HT [1, 3].

To determine a HT in which two sides differ by 3, takeλ = 1
2 family and set

b− a = 3. This leads to the equationm2 − 6n2 = 3. The solution(m,n) = (3, 1)
gives(a, b, c) = (37, 40, 13); (m,n) = (27, 11) gives(3037, 3040, 1213) and so
on. This technique can be extended.
A2. A pair of HT having a common side.Consider the pairsλ = 1, λ = 1

2 ;
λ = 1

3 , λ = 2
3 ; or some two distinctλ−families that give identical expressions for

a particular side. For instance,m = 3, n = 1 in λ = 1
3 andλ = 2

3 families yields
a pair(164, 175, 39) and(85, 92, 39). It is now easy to obtain as many pairs as one
desires. This is a quicker solution than the one suggested byA1.
A3. A pair of HT in which a pair of corresponding sides are in the ratio1 : 2, 1 : 3,
2 : 3 etc. The solution lies in the column for sidec.
A4. A HT in which two sides sum to a square.We considerλ = 1

2 family where
a + c = 5(m2 + n2) is made square bym = 11, n = 2; (488, 585, 137). It is now
a simple matter to generate any number of them.

B. Involving perimeter.The perimeter column shows that it is a function of the
single parameterm. This enables us to pose, and solve almost effortlessly, many
perimeter related problems. To solve such problems by traditional methods would
often at best be extremely difficult. Here we present a sample.
B1. A HT in which the perimeter is a square.A glance at Table 1 reveals that
π = 36m2 for λ = 1

4 family. An infinity of primitive HT of this type is available.
B2. A pair of HT having equal perimeter.An infinity of solution is provided by the
λ = 2

5 andλ = 7
4 families. All that is needed is to substitute identical values form

and suitable values ton to ensure the outcome of primitive HT.
B3. A finite number of HT all with equal perimeter.The solution is unbelievably
simple! Takeanyλ family and put sufficiently large constant value form and then
vary the values ofn only.

A pair of HT in which one perimeter is twice, thrice,. . . another, or three or more
HT whose perimeters are in arithmetic progression, or a set of four HT such that the
sum or the product of two perimeters equals respectively the sum or the product
of the other two perimeters are simple games to play. More extensive tables of
λ−family HT coupled with a greater degree of observation ensures that ingenius
problem posing solving activity runs wild.

C. Involving area.Theλ = 1
2 family has� = 10mn(m2 − n2). Now,mn(m2 −

n2) gives the area of the Pythagorean triangle(m2 −n2, 2mn,m2 + n2). Because
of this an obvious problem has posed and solved itself:
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C1. Given a Pythagorean triangle there exists a non-Pythagorean Heron triangle
such that the latter area is ten times the former.

It may happen that sometimes one of them may be primitive and the other not,
or both may not be primitive. Also, form = 2, n = 1, both are Pythagorean. How-
ever, there is the(6, 25, 29) Heron triangle with� = 60. This close relationship
should enable us to put known vast literature on Pythagorean problems to good
use, see the following problem for example.
C2. Two Heron triangles having equal area; two HT having areas in the ratior : s.

In [3], pp. 172 – 175, this problem has been solved for right triangles. The
primitive solutions are not guaranteed.

D. Miscellaneous problems.In this section we consider problems involving both
perimeter and area.
D1. HT in which perimeter equals area.This is such a popular problem that it
continues to resurface. It is known that there are just five such HT. The reader
is invited to determine them. Hint: They are inλ = 1

4 , 1
3 , 2

5 , 1 and 4
3 families.

Possibly elsewhere too, see the remark preceding Corollary 4.
D2. HT in whichπ and� are squares.In λ = 1

4 family we putm = 169, n = 1.
D3. Pairs of HT with equal perimeter and equal area in each pair.An infinity
of such pairs may be obtained fromλ = 1

2 family. We putm = u2 + uv + v2,
n1 = u2 − v2 andm = u2 + uv + v2, n2 = 2uv + v2. For instance,u = 3,
v = 1 i.e., m = 13, n1 = 8, n2 = 7 produces a desired pair(148, 105, 85) and
(145, 120, 73). They haveπ1 = π2 = 338 and�1 = �2 = 4368.

If we accept pairs of HT that may not be primitive then we may considerλ = 2
3

family. Here,m = p2 + 3q2, n1 = p2 − 3q2 andm = p2 + 3q2, n2 = 1
2(−p2 +

6pq + 3q2).

E. Open problems.We may look upon the problem (D3) as follows:
π2

π1
=

�2

�1
=

1. This immediately leads to the following
Open problem 1.Suppose two HTs have perimetersπ1, π2 and areas�1, �2 such

that
π2

π1
=

�2

�1
=

p

q
, a rational number. Prove or disprove the existence of an

infinity of HT such that for each pair
π2

π1
=

�2

�1
=

p

q
holds.

For instance,λ1 = 1
5 , (odd)m1 > 4k, n1 = 4k andλ2 = 4

5 , m2 > 4k (again

odd),m2 = m1, n2 = 2k yield
π2

π1
=

�2

�1
=

11
7

for k = 1, 2, 3, . . . .

With some effort it is possible to find an infinity of pairs of HT such that for

each pair,
�2

�1
= e · π2

π1
for certain natural numberse. This leads to

Open problem 2.Let e be a given natural number. Prove or disprove the existence

of an infinity of pairs of HT such that for each pair
�2

�1
= e · π2

π1
holds.
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5. Conclusion

The present description of Heron triangles did provide simple solutions to cer-
tain Heron problems. Additionally it suggested new ones that arose naturally in
our discussion. The reader is encouraged to try otherλ−families for different so-
lutions from the presented ones. There is much scope for problem posing and
solving activity. Non-standard problems such as: find three Heron triangles whose
perimeters (areas) are themselves the sides of a Heron triangle or a Pythagorean
triangle. Equally important is to pose unsolved problems. A helpful step in this
direction would be to consider Heron analogues of the large variety of existing
Pythagorean problems.
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