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Concurrency of Four Euler Lines

Antreas P. Hatzipolakis, Floor van Lamoen, Barry Wolk, and Paul Yiu

Abstract. Using tripolar coordinates, we prove that ifP is a point in the plane
of triangleABC such that the Euler lines of trianglesPBC, APC andABP
are concurrent, then their intersection lies on the Euler line of triangleABC.
The same is true for the Brocard axes and the lines joining the circumcenters to
the respective incenters. We also prove that the locus ofP for which the four
Euler lines concur is the same as that for which the four Brocard axes concur.
These results are extended to a familyLn of lines through the circumcenter. The
locus ofP for which the fourLn lines ofABC, PBC, APC andABP concur
is always a curve through 15 finite real points, which we identify.

1. Four line concurrency

Consider a triangleABC with incenterI. It is well known [13] that the Euler
lines of the trianglesIBC, AIC andABI concur at a point on the Euler line of
ABC, the Schiffler point with homogeneous barycentric coordinates1

(
a(s− a)
b + c

:
b(s− b)
c + a

:
c(s − c)
a + b

)
.

There are other notable points which we can substitute for the incenter, so that a
similar statement can be proven relatively easily. Specifically, we have the follow-
ing interesting theorem.

Theorem 1. Let P be a point in the plane of triangle ABC such that the Euler
lines of the component triangles PBC , APC and ABP are concurrent. Then the
point of concurrency also lies on the Euler line of triangle ABC .

When one tries to prove this theorem with homogeneous coordinates, calcula-
tions turn out to be rather tedious, as one of us has noted [14]. We present an easy
analytic proof, making use of tripolar coordinates. The same method applies if we
replace the Euler lines by the Brocard axes or theOI-lines joining the circumcen-
ters to the corresponding incenters.

Publication Date: April 9, 2001. Communicating Editor: Jean-Pierre Ehrmann.
1This appears asX21 in Kimberling’s list [7]. In the expressions of the coordinates,s stands for

the semiperimeter of the triangle.
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2. Tripolar coordinates

Given triangleABC with BC = a, CA = b, andAB = c, consider a point
P whose distances from the vertices arePA = λ, PB = µ andPC = ν. The
precise relationship amongλ, µ, andν dates back to Euler [4]:

(µ2 + ν2 − a2)2λ2 + (ν2 + λ2 − b2)2µ2 + (λ2 + µ2 − c2)2ν2

−(µ2 + ν2 − a2)(ν2 + λ2 − b2)(λ2 + µ2 − c2) − 4λ2µ2ν2 = 0.

See also [1, 2]. Geometers in the 19th century referred to the triple(λ, µ, ν) as the
tripolar coordinates ofP . A comprehensive introduction can be found in [12].2

This series begins with the following easy theorem.

Proposition 2. An equation of the form �λ2 + mµ2 + nν2 + q = 0 represents a
circle or a line according as � + m + n is nonzero or otherwise.

The center of the circle has homogeneous barycentric coordinates(� : m : n).
If � + m + n = 0, the line is orthogonal to the direction(� : m : n). Among the
applications one finds the equation of the Euler line in tripolar coordinates [op. cit.
§26]. 3

Proposition 3. The tripolar equation of the Euler line is

(b2 − c2)λ2 + (c2 − a2)µ2 + (a2 − b2)ν2 = 0. (1)

We defer the proof of this proposition to§5 below. Meanwhile, note how this
applies to give a simple proof of Theorem 1.

3. Proof of Theorem 1

Let P be a point with tripolar coordinates(λ, µ, ν) such that the Euler lines of
trianglesPBC, APC andABP intersect at a pointQ with tripolar coordinates
(λ′, µ′, ν ′). We denote the distancePQ by ρ.

Applying Proposition 3 to the trianglesPBC, APC andABP , we have

(ν2 − µ2)ρ2 +(µ2 − a2)µ′2 + (a2 − ν2)ν ′2= 0,

(b2 − λ2)λ′2 +(λ2 − ν2)ρ2 + (ν2 − b2)ν ′2 = 0,

(λ2 − c2)λ′2 +(c2 − µ2)µ′2 + (µ2 − λ2)ρ2 = 0.

Adding up these equations, we obtain (1) withλ′, µ′, ν ′ in lieu of λ, µ, ν. This
shows thatQ lies on the Euler line ofABC.

2[5] and [8] are good references on tripolar coordinates.
3The tripolar equations of the lines in§§5 – 7 below can be written down from the barycentric

equations of these lines. The calculations in these sections, however, do not make use of these
barycentric equations.
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4. Tripolar equations of lines through the circumcenter

O. Bottema [2, pp.37–38] has given a simple derivation of the equation of the
Euler line in tripolar coordinates. He began with the observation that since the
point-circles

λ2 = 0, µ2 = 0, ν2 = 0,

are all orthogonal to the circumcircle,4 for arbitraryt1, t2, t3, the equation

t1λ
2 + t2µ

2 + t3ν
2 = 0 (2)

represents a circle orthogonal to the circumcircle. By Proposition 2, this represents
a line through the circumcenter if and only ift1 + t2 + t3 = 0.

5. Tripolar equation of the Euler line

Consider the centroidG of triangleABC. By the Apollonius theorem, and the
fact thatG divides each median in the ratio2 : 1, it is easy to see that the tripolar
coordinates ofG satisfy

λ2 : µ2 : ν2 = 2b2 + 2c2 − a2 : 2c2 + 2a2 − b2 : 2a2 + 2b2 − c2.

It follows that the Euler lineOG is defined by (2) witht1, t2, t3 satisfying

t1 + t2 + t3 = 0,
(2b2 + 2c2 − a2)t1 + (2c2 + 2a2 − b2)t2 + (2a2 + 2b2 − c2)t3 = 0,

or t1 : t2 : t3 = b2 − c2 : c2 − a2 : a2 − b2.

This completes the proof of Proposition 3.

4These point-circles are evidently the vertices of triangleABC.
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6. Tripolar equation of the OI-line

For the incenterI, we have

λ2 : µ2 : ν2 = csc2 A

2
: csc2 B

2
: csc2 C

2
=

s− a

a
:
s− b

b
:
s− c

c
,

wheres = a+b+c
2 . The tripolar equation of theOI-line is given by (2) witht1, t2,

t3 satisfying

t1 + t2 + t3 = 0,
s− a

a
t1 +

s− b

b
t2 +

s− c

c
t3 = 0.

From these,t1 : t2 : t3 = 1
b − 1

c : 1
c − 1

a : 1
a − 1

b , and the tripolar equation of the
OI-line is (

1
b
− 1

c

)
λ2 +

(
1
c
− 1

a

)
µ2 +

(
1
a
− 1

b

)
ν2 = 0.

The same reasoning in§3 yields Theorem 1 with the Euler lines replaced by the
OI-lines.

7. Tripolar equation of the Brocard axis

The Brocard axis is the line joining the circumcenter to the symmedian point.
Since this line contains the two isodynamic points, whose tripolar coordinates, by
definition, satisfy

λ : µ : ν =
1
a

:
1
b

:
1
c
,

it is easy to see that the tripolar equation of the Brocard axis is5

(
1
b2

− 1
c2

)
λ2 +

(
1
c2

− 1
a2

)
µ2 +

(
1
a2

− 1
b2

)
ν2 = 0.

The same reasoning in§3 yields Theorem 1 with the Euler lines replaced by the
Brocard axes.

8. The lines Ln

The resemblance of the tripolar equations in§§5 – 7 suggests consideration of
the family of lines through the circumcenter:

Ln : (bn − cn)λ2 + (cn − an)µ2 + (an − bn)ν2 = 0,

for nonzero integersn. The Euler line, the Brocard axis, and theOI-line are re-
spectivelyLn for n = 2, −2, and−1. In homogeneous barycentric coordinates,

5The same equation can be derived directly from the tripolar distances of the symmedian point:

AK2 = b2c2(2b2+2c2−a2)

(a2+b2+c2)2
etc. This can be found, for example, in [11, p.118].
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the equation ofLn is6

∑
cyclic

(an(b2 − c2) − (bn+2 − cn+2))x = 0.

The lineL1 contains the points7

(2a + b + c : a + 2b + c : a + b + 2c)

and

(a(b + c) − (b− c)2 : b(c + a) − (c− a)2 : c(a + b) − (a− b)2).

Theorem 1 obviously applies when the Euler lines are replaced byLn lines for a
fixed nonzero integern.

9. Intersection of the Ln lines

It is known that the locus ofP for which the Euler lines (L2) of trianglesPBC,
APC andABP are concurrent is the union of the circumcircle and the Neuberg
cubic.8 See [10, p.200]. Fred Lang [9] has computed the locus for the Brocard axes
(L−2) case, and found exactly the same result. The coincidence of these two loci
is a special case of the following theorem.

Theorem 4. Let n be a nonzero integer. The Ln lines of triangles PBC , APC and
ABP concur (at a point on Ln) if and only if the L−n lines of the same triangles
concur (at a point on L−n).

Proof. Consider the component trianglesPBC, APC andABP of a pointP . If
P has tripolar coordinates(L,M,N), then theLn lines of these triangles have
tripolar equations

Ln(PBC) : (Nn −Mn)ρ2 + (Mn − an)µ2 + (an −Nn)ν2 = 0,

Ln(APC) : (bn − Ln)λ2 + (Ln −Nn)ρ2 + (Nn − bn)ν2 = 0,

Ln(ABP ) : (Ln − cn)λ2 + (cn −Mn)µ2 + (Mn − Ln)ρ2 = 0,

whereρ is the distance betweenP and a variable point(λ, µ, ν).9 These equations
can be rewritten as

6This can be obtained from the tripolar equation by putting

λ2 =
1

(x + y + z)2
(c2y2 + (b2 + c2 − a2)yz + b2z2)

and analogous expressions forµ2 andν2 obtained by cyclic permutations ofa, b, c andx, y, z.
7These are respectively the midpoint between the incenters ofABC and its medial triangle, and

the symmedian point of the excentral triangle of the medial triangle.
8The Neuberg cubic is defined as the locus of pointsP such that the line joiningP to its isogonal

conjugate is parallel to the Euler line.
9See Figure 1, withλ, µ, ν replaced byL, M , N , andλ′, µ′, ν′ by λ, µ, ν respectively.
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− (Mn − an)(ρ2 − µ2) + (Nn − an)(ρ2 − ν2) = 0,
(Ln − bn)(ρ2 − λ2) − (Nn − bn)(ρ2 − ν2) = 0,

−(Ln − cn)(ρ2 − λ2) + (Mn − cn)(ρ2 − µ2) = 0.
(3)

One trivial solution to these equations isρ = λ = µ = ν, which occurs only
when the variable point is the circumcenterO, with P on the circumcircle. In this
case theLn lines all concur at the pointO, for all n. Otherwise, we have a solution
to (3) with at least one of the valuesρ2 −λ2, ρ2 −µ2, andρ2 − ν2 being non-zero.
And the condition for a solution of this kind is

(Ln − bn)(Mn − cn)(Nn − an) = (Ln − cn)(Mn − an)(Nn − bn). (4)

This condition is clearly necessary. Conversely, takeP satisfying (4). This says
that (3), as linear homogeneous equations inρ2 − λ2, ρ2 − µ2, andρ2 − ν2, have
a nontrivial solution(u, v,w), which is determined up to a scalar multiple. Then
the equations of theLn lines of trianglesABP andPBC can be rewritten as
( 1

u − 1
v )XP 2 − 1

uXA2 + 1
vXB2 = 0 and(1

v − 1
w )XP 2 − 1

vXB2 + 1
wXC2 = 0.

If X is a point common to these two lines, then it satisfies

XP 2 −XA2

u
=

XP 2 −XB2

v
=

XP 2 −XC2

w
and also lies on theLn line of triangleAPC.

Note that (4) is clearly equivalent to(
1
Ln

− 1
bn

)(
1

Mn
− 1
cn

)(
1
Nn

− 1
an

)
=

(
1
Ln

− 1
cn

)(
1

Mn
− 1
an

)(
1
Nn

− 1
bn

)
,

which, by exactly the same reasoning, is the concurrency condition for theL−n

lines of the same triangles. �
Corollary 5. The locus of P for which the Brocard axes of triangles PBC , APC
and ABP are concurrent (at a point on the Brocard axis of triangle ABC) is the
union of the circumcircle and the Neuberg cubic.

Let Cn be the curve with tripolar equation

(λn − bn)(µn − cn)(νn − an) = (λn − cn)(µn − an)(νn − bn),

so that together with the circumcircle, it constitutes the locus of pointsP for which
the fourLn lines of trianglesPBC, APC, ABP andABC concur.10 The sym-
metry of equation (4) leads to the following interesting fact.

Corollary 6. If P lies on the Cn curve of triangle ABC , then A (respectively B,
C) lies on the Cn curve of triangle PBC (respectively APC , ABP ).

Remark. The equation ofCn can also be written in one of the following forms:∑
cyclic

(bn − cn)(anλn + µnνn) = 0

10By Theorem 4, it is enough to considern positive.
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or ∣∣∣∣∣∣
λn + an µn + bn νn + cn

anλn bnµn cnνn

1 1 1

∣∣∣∣∣∣ = 0.

10. Points common to Cn curves

Proposition 7. A complete list of finite real points common to all Cn curves is as
follows:

(1) the vertices A, B, C and their reflections on the respective opposite side,
(2) the apexes of the six equilateral triangles erected on the sides of ABC ,
(3) the circumcenter, and
(4) the two isodynamic points.

Proof. It is easy to see that each of these points lies onCn for every positive integer
n. For the isodynamic points, recall thatλ : µ : ν = 1

a : 1
b : 1

c . We show thatC1

andC2 meet precisely in these 15 points. From their equations

(λ− b)(µ− c)(ν − a) = (λ− c)(µ− a)(ν − b) (5)

and
(λ2 − b2)(µ2 − c2)(ν2 − a2) = (λ2 − c2)(µ2 − a2)(ν2 − b2). (6)

If both sides of (5) are zero, it is easy to list the various cases. For example,
solutions likeλ = b, µ = a lead to a vertex and its reflection through the opposite
side (in this caseC and its reflection inAB); solutions likeλ = b, ν = b lead
to the apexes of equilateral triangles erected on the sides ofABC (in this case on
AC). Otherwise we can factor and divide, getting

(λ + b)(µ + c)(ν + a) = (λ + c)(µ + a)(ν + b).

Together with (5), this is easy to solve. The only solutions in this case areλ =
µ = ν andλ : µ : ν = 1

a : 1
b : 1

c , giving respectivelyP = O and the isodynamic
points. �
Remarks. (1) If P is any of the points listed above, then this result says that the
trianglesABC,PBC,APC, andABP have concurrentLn lines, for all non-zero
integersn. There is no degeneracy in the case whereP is an isodynamic point, and
we then get an infinite sequence of four-fold concurrences.

(2) The curveC4 has degree 7, and contains the two circular points at infinity,
each of multiplicity 3. These, together with the 15 finite real points above, account
for all 21 intersections ofC2 andC4.

11. Intersections of Euler lines and of Brocard axes

Forn = ±2, the curveCn is the Neuberg cubic∑
cyclic

((b2 − c2)2 + a2(b2 + c2) − 2a4)x(c2y2 − b2z2) = 0

in homogeneous barycentric coordinates. Apart from the points listed in Proposi-
tion 7, this cubic contains the following notable points: the orthocenter, incenter
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and excenters, the Fermat points, and the Parry reflection point.11 A summary of
interesting properties of the Neuberg cubic can be found in [3]. Below we list the
corresponding points of concurrency, giving their coordinates. For points like the
Fermat points and Napoleon points resulting from erecting equilateral triangles on
the sides, we label the points byε = +1 or −1 according as the equilateral trian-
gles are constructed exterior toABC or otherwise. Also,∆ stands for the area of
triangleABC. For functions likeFa, Fb, Fc indexed bya, b, c, we obtainFb and
Fc from Fa by cyclic permutations ofa, b, c.

P Intersection of Euler lines Intersection of Brocard axes

Circumcenter Circumcenter Circumcenter
Reflection of vertex Intercept of Euler line Intercept of Brocard axis

on opposite side on the side line on the side line
Orthocenter Nine-point center Orthocenter of orthic triangle

Incenter Schiffler point Isogonal conjugate of Spieker center
Excenters

Ia = (−a : b : c) ( as
b+c : b(s−c)

c−a : c(s−b)
−a+b ) ( a2

b+c : b2

c−a : c2

−a+b )
Ib = (a : −b : c) (a(s−c)

−b+c : bs
c+a : c(s−a)

a−b ) ( a2

−b+c : b2

c+a : c2

a−b )
Ic = (a : b : −c) (a(s−b)

b−c : b(s−a)
−c+a : cs

a+b ) ( a2

b−c : b2

−c+a : c2

a+b )
ε-Fermat point centroid Isogonal conjugate of

(−ε)-Napoleon point
ε-isodynamic point Isogonal conjugate of

ε-Napoleon point

Apexes of ε-equilateral triangles erected on the sides of ABC . Let P be the apex
of an equilateral triangle erected the sideBC. This has coordinates(

− 2a2 : a2 + b2 − c2 + ε · 4√
3
∆ : c2 + a2 − b2 + ε · 4√

3
∆

)
.

The intersection of the Euler lines has coordinates(
− a2(a2 − b2)(a2 − c2) : (a2 − b2)(a2b2 + ε · 4√

3
∆(a2 + b2 − c2))

: (a2 − c2)(a2c2 + ε · 4√
3
∆(c2 + a2 − b2))

)
,

and the Brocard axis intersection is the point(
a2(a2 − b2)(a2 − c2)(−ε(b2 + c2 − a2) + 4

√
3∆)

: b2(a2 − b2)(−ε(a4 + 2b4 + 3c4 − 5b2c2 − 4c2a2 − 3a2b2) + 4
√

3∆(c2 + a2))

: c2(a2 − c2)(−ε(a4 + 3b4 + 2c4 − 5b2c2 − 3c2a2 − 4a2b2) + 4
√

3∆(a2 + b2))
)
.

11Bernard Gibert has found that the Fermat points of the anticomplementary triangle ofABC
also lie on the Neuberg cubic. These are the pointsX616 andX617 in [7]. Their isogonal conjugates
(in triangleABC) clearly lie on the Neuberg cubic too. Ed.
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Isodynamic points. For theε-isodynamic point, the Euler line intersections are

(a2(
√

3b2c2 + ε · 4∆(b2 + c2 − a2))
: b2(

√
3c2a2 + ε · 4∆(c2 + a2 − b2))

: c2(
√

3a2b2 + ε · 4∆(a2 + b2 − c2))).

These points divide the segmentGO harmonically in the ratio8 sinA sinB sinC :
3
√

3.12 The Brocard axis intersections for the Fermat points and the isodynamic
points are illustrated in Figure 2.

C

A

B

F+

F−

D+
D−

O

Figure 2

The Parry reflection point. This is the reflection of the circumcenter in the focus
of the Kiepert parabola.13 Its coordinates, and those of the Euler line and Brocard
axis intersections, can be described with the aids of three functions.

(1) Parry reflection point:(a2Pa : b2Pb : c2Pc),
(2) Euler line intersection:(a2Pafa : b2Pbfb : c2Pcfc),
(3) Brocard axis intersection:(a2faga : b2fbgb : c2fcgc), where

Pa = a8 − 4a6(b2 + c2) + a4(6b4 + b2c2 + 6c4)
−a2(b2 + c2)(4b4 − 5b2c2 + 4c4) + (b2 − c2)2(b4 + 4b2c2 + c4),

fa = a6 − 3a4(b2 + c2) + a2(3b4 − b2c2 + 3c4) − (b2 − c2)2(b2 + c2),
ga = 5a8 − 14a6(b2 + c2) + a4(12b4 + 17b2c2 + 12c4)

−a2(b2 + c2)(2b2 + c2)(b2 + 2c2) − (b2 − c2)4.

12These coordinates, and those of the Brocard axis intersections, can be calculated by using the
fact that trianglePBC has(−ε)-isodynamic point at the vertexA and circumcenter at the point

(a2((b2+c2−a2)−ε·4
√

3∆) : b2((c2+a2−b2)+ε·4
√

3∆) : c2((a2+b2−c2)+ε·4
√

3∆)).

13The Parry reflection point is the pointX399 in [6]. The focus of the Kiepert parabola is the point
on the circumcircle with coordinates( a2

b2−c2
: b2

c2−a2 : c2

a2−b2
).



68 A.P. Hatzipolakis et al.

This completes the identification of the Euler line and Brocard axis intersections
for points on the Neuberg cubic. The identification of the locus for theL±1 prob-
lems is significantly harder. Indeed, we do not know of any interesting points on
this locus, except those listed in Proposition 7.
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