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Some Properties of the Lemoine Point

Alexei Myakishev

Abstract. The Lemoine point,K, of �ABC has special properties involving
centroids of pedal triangles. These properties motivate a definition of Lemoine
field,F , and a coordinatization of the plane of�ABC using perpendicular axes
that pass throughK. These principal axes are symmetrically related to two other
lines: one passing through the isodynamic centers, and the other, the isogonic
centers.

1. Introduction

LetA′B′C ′ be the pedal triangle of an arbitrary pointZ in the plane of a triangle
ABC, and consider the vector fieldF defined byF(Z) = ZA′ + ZB′ + ZC′. It
is well known thatF(Z) is the zero vector if and only ifZ is the Lemoine point,
K, also called the symmedian point. We callF theLemoine field of �ABC and
K thebalance point of F.
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The Lemoine field may be regarded as a physical force field. Any pointZ in this
field then has a natural motion along a certain curve, or trajectory. See Figure 1.
We shall determine parametric equations for these trajectories and find, as a result,
special properties of the lines that bisect the angles between the line of the isogonic
centers and the line of the isodynamic centers of�ABC.
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2. The Lemoine equation

In the standard cartesian coordinate system, place�ABC so thatA = (0, 0),
B = (c, 0), C = (m,n), and writeZ = (x, y). For any linePx +Qy + R = 0,
the vectorH fromZ to the projection ofZ on the line has components

hx =
−P

P 2 +Q2
(Px+Qy +R), hy =

−Q
P 2 +Q2

(Px+Qy +R).

From these, one find the components of the three vectors whose sum definesF(Z):

vector x− component y − component

ZA′ −n(nx+y(c−m)−cn)
n2+(c−m)2

(m−c)(nx+y(c−m)−cn)
n2+(c−m)2

ZB′ −n(nx−my)
m2+n2

m(nx−my)
m2+n2

ZC′ 0 −y
The components of the Lemoine fieldF(Z) = ZA′ + ZB′ + ZC′ are given by

Fx = −(αx+ βy) + dx, Fy = −(βx+ γy) + dy,

where

α = n2

m2+n2 + n2

n2+(c−m)2
, β = −mn

m2+n2 + n(c−m)
n2+(c−m)2

,

γ = 1 + m2

m2+n2 + (c−m)2

n2+(c−m)2
;

dx = cn2

n2+(c−m)2
, dy = cn(c−m)

n2+(c−m)2
.

See Figure 2. Assuming a unit mass at each pointZ, Newton’s Second Law now
gives a system of differential equations:

x′′ = −(αx+ βy) + dx, y′′ = −(βx+ γy) + dy,

where the derivatives are with respect to time,t. We now translate the origin from
(0, 0) to the balance point(dx, dy), which is the Lemoine pointK, thereby obtain-
ing the system

x′′ = −(αx+ βy), y′′ = −(βx+ γy),

which has the matrix form (
x′′
y′′

)
= −M

(
x
y

)
, (1)

whereM =
(
α β
β γ

)
. We shall refer to (1) as theLemoine equation.

3. Eigenvalues of the matrix M

In order to solve equation (1), we first find eigenvaluesλ1 andλ2 of M . These
are the solutions of the equation|M − λI| = 0, i.e., (α − λ)(γ − λ) − β2 = 0, or

λ2 − (α+ γ)λ+ (αγ − β2) = 0.
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Thus

λ1 + λ2 = α+ γ = 1 +
m2 + n2

m2 + n2
+
n2 + (c−m)2

n2 + (c−m)2
= 3.

Writing a, b, c for the sidelengths|BC|, |CA|, |AB| respectively, we find the
determinant

|M | = αγ − β2 =
n2

a2b2
(a2 + b2 + c2) > 0.

The discriminant of the characteristic equationλ2 − (α+ γ)λ+ (αγ − β2) = 0 is
given by

D = (α+ γ)2 − 4(αγ − β2) = (α− γ)2 + 4β2 ≥ 0. (2)

Case 1: equal eigenvalues λ1 = λ2 = 3
2 . In this case,D = 0 and (2) yieldsβ = 0

andα = γ. To reduce notation, writep = c − m. Then sinceβ = 0, we have
m

m2+n2 = p
p2+n2 , so that

(m− p)(mp− n2) = 0. (3)

Also, sinceα = γ, we find after mild simplifications

n4 − (m2 + p2)n2 − 3m2p2 = 0. (4)

Equation (3) imples thatm = p or mp = n2. If m = p, then equation (4) has

solutionsn =
√

3m =
√

3p. Consequently,C =
(

1
2c,

√
3

2 c
)

, so that�ABC is

equilateral. However, ifmp = n2, then equation (4) leads to(m+ p)2 = 0, so that
c = 0, a contradiction. Therefore from equation (3) we obtain this conclusion:if
the eigenvalues are equal, then �ABC is equilateral.

Case 2: distinct eigenvalues λ1,2 = 3±√
D

2 . HereD > 0, andλ1,2 > 0 according
to (2). We choose to consider the implications when

β = 0, α �= γ. (5)

We omit an easy proof that these conditions correspond to�ABC being a right
triangle or an isosceles triangle. In the former case, writec2 = a2 + b2. Then the
characteristic equation yields eigenvaluesα andγ, and

α =
n2

b2
+
n2

a2
=
n2(a2 + b2)

a2b2
=
n2c2

a2b2
= 1,

sinceab = nc = twice the area of the right triangle. Sinceα+ γ = 3, γ = 2.

4. General solution of the Lemoine equation

According to a well known theorem of linear algebra, rotation of the coordinate
system aboutK gives the systemx′′ = −λ1x, y

′′ = −λ2y. Let us call the axes of
this coordinate system theprincipal axes of the Lemoine field.

Note that if�ABC is a right triangle or an isosceles triangle (cf. conditions
(5)), then the angle of rotation is zero, andK is on an altitude of the triangle. In
this case, one of the principal axes is that altitude, and the other is parallel to the
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corresponding side. Also if�ABC is a right triangle, thenK is the midpoint of
that altitude.

In the general case, the solution of the Lemoine equation is given by

x = c1 cosω1t+ c2 sinω2t, y = c3 cosω1t+ c4 sinω2t, (6)

whereω1 =
√
λ1, ω2 =

√
λ2. Initial conditionsx(0) = x0, y(0) = y0, x′(0) = 0,

y′(0) = 0 reduce (6) to

x = x0 cosω1t, y = y0 cosω2t, (7)

with ω1 > 0, ω2 > 0, ω2
1 + ω2

2 = 3. Equations (7) show that each trajectory is
bounded. Ifλ1 = λ2, then the trajectory is a line segment; otherwise, (7) represents
a Lissajous curve or an almost-everywhere rectangle-filling curve, according asω1

ω2

is rational or not.

5. Lemoine sequences and centroidal orbits

Returning to the Lemoine field,F, supposeZ0 is an arbitrary point, andGZ0 is
the centroid of the pedal triangle ofZ0. LetZ ′

0 be the point to whichF translates
Z0. It is well known thatGZ0 lies on the lineZ0Z

′
0 at a distance13 of that from

Z0 to Z ′
0. With this in mind, define inductively theLemoine sequence of Z0 as

the sequence(Z0, Z1, Z2, . . .), whereZn, for n ≥ 1, is the centroid of the pedal
triangle ofZn−1. Writing the centroid of the pedal triangle ofZ0 asZ1 = (x1, y1),
we obtain3(x1 − x0) = −λ1x0 and

x1 =
1
3
(3 − λ1)x0 =

1
3
λ2x0; y1 =

1
3
λ1y0.

Accordingly, the Lemoine sequence is given with respect to the principal axes by

Zn =
(
x0

(
λ2

3

)n

, y0

(
λ1

3

)n)
. (8)

Since1
3λ1 and 1

3λ2 are between0 and1, the pointsZn approach(0, 0) asn → ∞.
That is, the Lemoine sequence of every point converges to the Lemoine point.

Representation (8) shows thatZn lies on the curve(x, y) = (x0u
t, y0v

t), where
u = 1

3λ2 andv = 1
3λ1. We call this curve thecentroidal orbit of Z0. See Figure

3. Reversing the directions of axes if necessary, we may assume thatx0 > 0 and
y0 > 0, so that elimination oft gives

y

y0
=

(
x

x0

)k

, k =
ln v
lnu

. (9)

Equation (9) expresses the centroidal orbit ofZ0 = (x0, y0). Note that ifω1 =
ω2, thenv = u, and the orbit is a line. Now letXZ andYZ be the points in which
line ZGZ meets the principal axes. By (8),

|ZGZ |
|GZXZ | =

λ2

λ1
,

|ZGZ |
|GZYZ | =

λ1

λ2
. (10)
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These equations imply that if�ABC is equilateral with centerO, then the centroid
GZ is the midpoint of segmentOGZ .

As another consequence of (10), suppose�ABC is a right triangle; letH be
the line parallel to the hypotenuse and passing through the midpoint of the altitude
H ′ to the hypotenuse. LetX andY be the points in which lineZGZ meetsH and
H ′, respectively. Then|ZGZ | : |XGZ | = |Y GZ | : |ZGZ | = 2 : 1.

6. The principal axes of the Lemoine field

Physically, the principal axes may be described as the locus of points in the plane
of �ABC along which the “direction” of the Lemoine sequence remains constant.
That is, ifZ0 lies on one of the principal axes, then all the pointsZ1, Z2, . . . lie on
that axis also.

In this section, we turn to the geometry of the principal axes. Relative to the
coordinate system adopted in§5, the principal axes have equationsx = 0 andy =
0. Equation (8) therefore shows that ifZ0 lies on one of these two perpendicular
lines, thenZn lies on that line also, for alln ≥ 1.

Let A1, A2 denote the isodynamic points, andF1, F2 the isogonic centers, of
�ABC. Call linesA1A2 andF1F2 the isodynamic axis and theisogonic axis
respectively.1

Lemma 1. Suppose Z and Z′ are a pair of isogonal conjugate points. Let O and
O′ be the circumcircles of the pedal triangles of Z and Z′. Then O = O′, and the
center of O is the midpoint between Z and Z′.

1The pointsF1, F2, A1, A2 are indexed asX13, X14, X15, X16 and discussed in [2].
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A proof is given in Johnson [1, pp.155–156]. See Figure 4.

Now suppose thatZ = A1. ThenZ ′ = F1, and, according to Lemma 1, the
pedal triangles ofZ andZ′ have the same circumcircle, whose centerO is the
midpoint betweenA1 andF1. Since the pedal triangle ofA1 is equilateral, the
pointO is the centroid of the pedal triangle ofA1.

Next, supposeL is a line not identical to either of the principal axes. LetL′ be
the reflection ofL about one of the principal axes. ThenL′ is also the reflection of
L about the other principal axis. We callL andL′ a symmetric pair of lines.

Lemma 2. Suppose that GP is the centroid of the pedal triangle of a point P , and
that Q is the reflection of P in GP . Then there exists a symmetric pair of lines, one
passing through P and the other passing through Q.

Proof. With respect to the principal axes, writeP = (xP , yP ) andQ = (xQ, yQ).
ThenGP = (1

3λ2xP ,
1
3λ1yP ), and2

3λ2xP = xP + xQ, so that

xQ =
(

2
3
λ2 − 1

)
xP =

1
3
(2λ2 − (λ1 + λ2))xP =

1
3
(λ2 − λ1)xP .

Likewise,yQ = 1
3yP (λ1 − λ2). It follows that xP

yP
= −xQ

yQ
. This equation shows

that the liney = yP
xP

· x passing throughP and the liney = yQ

xQ
· x passing through

Q are symmetric about the principal axesy = 0 andx = 0. See Figure 5. �

Theorem. The principal axes of the Lemoine field are the bisectors of the angles
formed at the intersection of the isodynamic and isogonic axes in the Lemoine
point.

Proof. In Lemma 2, takeP = A1 andQ = F1. The symmetric pair of lines are
then the isodynamic and isogonic axes. Their symmetry about the principal axes
is equivalent to the statement that these axes are the asserted bisectors. �
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