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The Isogonal Tripolar Conic

Cyril F. Parry

Abstract. In trilinear coordinates with respect to a given triangl&C, we
define the isogonal tripolar of a poift(p, q, ) to be the lingp: pa+qgB8+rvy =

0. We construct a unique conde, called the isogonal tripolar conic, with respect

to which p is the polar ofP for all P. Although the conic is imaginary, it has

a real center and real axes coinciding with the center and axes of the real orthic
inconic. SinceABC is self-conjugate with respect t, the imaginary conic is
harmonically related to every circumconic and inconicAd®C'. In particular,®

is the reciprocal conic of the circumcircle and Steiner’s inscribed ellipse. We also
construct an analogous isotomic tripolar codidoy working with barycentric
coordinates.

1. Trilinear coordinates

For any pointP in the planeABC, we can locate the right projections 6&f
on the sides of trianglel BC at P, P, P; and measure the distances,, PP,
and P Ps. If the distances are directed, i.e., measured posmvely in the dlrectlon of

each vertex to the opposite side, we can identify the dlSt&b]C&@Pl, B PPQ,
ol :PP3 (Figure 1) such that
aq +bB +cy =24

whereaq, b, ¢, A are the side lengths and area of triandlBC. This areal equation
for all positions of P means that the ratio of the distances is sufficient to define the
trilinear coordinates of P(«, 3,~) where

a:fB:y=a:0:1.

For example, if we consider the coordinates of the verethe incentet/, and
the first excenter;, we have absolute3y—coordinates :A(hy,0,0), I(r,r,7),
Ii(—r1,71,71), Wherehy, r, r1 are respectively the altitude from, the inradius
and the first exradius of triangléBC'. It follows that the trilinear3~y—coordinates
in their simplest form ared(1,0,0), I(1,1,1), ;(—1,1,1). Let R be the cir-
cumradius, andv, ho, hs the altitudes, so thathy = bhy = chs = 2A. The

absolute coordinates of the circumcentgr the orthocenterd, and the median
point1 G areO(Rcos A, Rcos B, RcosC), H(2R cos B cos C, 2R cos C cos A,
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2R cos A cos B), andG(L, 22 s giving trilinear coordinatesO (cos A, cos B,

cos C), H(sec 4, sec B, sec C), andG(%, 1, 1).

a’ b’
2. Isogonal conjugate

For any position ofP we can define its isogonal conjugafg such that the
directed angle$AC, AQ) = (AP, AB) = 6,, (BA,BP) = (BQ,BC) = 05,
(CB,CP) = (CQ CA) = 93 as shown in Figure 1. If the absolute coordinates
of Q area’ =QQ1, i3 ~QQ,, Y ~QQs, then

PP,  APsin(A —6) and QQ2  AQsind,
PP;  APsin6, QQ3  AQsin(A —6y)

so that thatP P, - QQ2 = PP3 - QQs, implying 53" = v+'. Similarly, aa’ = '
andyy = ad/, so thatao/ = 33’ = 77/. Consequentlywe’ = 53" =77

Figure 1

Hence,Q is the triangular inverse aP; i.e., if P has coordinateso, 3,7), then
its isogonal conjugaté&) has coordlnate$l L 1). It will be convenient to use

the notation? for the isogonal conjugate dP. We can immediately note that
O(cos A, cos B, cos C') and H (sec A, sec B,sec C') are isogonal conjugates On
the other hand, the symmedian poEﬁIbelng the isogonal conjugate@*(a, 3 o)
has coordinate&(a, b, c), i.e., the distances from to the sides of trlangIelBC
are proportional to the side lengths 4BC.

3. Tripolar

We can now define thiéne coordinates (I, m,n) of a given line/ in the plane
ABC, such that any poinP with coordinatega, 3, ) lying on ¢ must satisfy the
linear equationa + mB + ny = 0. In particular, the side line®C, CA, AB
have line coordinates (1,0,0), (0,1,0), (0,0,1), with equatiers0, 3 =0,y =0
respectively.

A specific line that may be defined is the harmonic or trilinear polap a¥ith
respect tad BC', which will be called theripolar of Q.

In Figure 2,L' M'N' is the tripolar ofQ), whereLM N is the diagonal triangle
of the quadrangled BCQ; and L' M’ N’ is the axis of perspective of the triangles
ABC and LM N. Any line through@ meeting two sides oABC atU, V and
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meeting L’ M’ N’ at W creates an harmonic rang&V; QW). To find the line
coordinates ofl’ M’'N’ when@ has coordinate§y, ¢’,r’), we noteL = AQ N
BC has coordinate$0, ¢,r'), sinceff2 = 2. Similarly for M (p/,0,r') and
N(p',4q',0). Hence the equation of the ling N is

(0%

TRras: ®
since the equation is satisfied when the coordinate® afr N are substituted for
a, B3,vin (1). So the coordinates df = M N N BC areL'(0,¢’, —r'). Similarly
for M'(p’,0,—r") andN'(p’, —¢’, 0), leading to the equation of the liné¢ /' N":

1% + § +L=0. )

Figure 2

Now from the previous analysis, i?(p, ¢,r) andQ(¢/, ¢’, ") are isogonal con-
jugates themp’ = q¢' = 7’ so that from (2) the equation of the lidéM’' N’ is
pa+ qf + rvy = 0. In other words, the line coordinates of the tripolaipére the
trilinear coordinates of”. We can then define thisogonal tripolar of P(p,q,r)
as the linel/ M’ N’ with equationpa + ¢ + ry = 0.

For example, for the verticed(1,0,0), B(0,1,0), C(0,0,1), the isogonal
tripolars are the corresponding sidB¢’ (. = 0), CA (8 = 0), AB (v = 0). For
the notable point)(cos A, cos B, cos C), 1(1,1,1), G(%, 1, 1), andK(a,b,c),
the corresponding isogonal tripolars are

0: acos A+ Bcos B+ ycosC =0,
i a+pB+v=0,
e
g: _+é+1:07
a b ¢
k: aa + b3 4+ ¢y = 0.

Here,o, i, g, k are respectively the orthic axis, the anti-orthic axis, Lemoine’s line,
and the line at infinity, i.e., the tripolars éf, I, K, andG. Clark Kimberling has
assembled a catalogue of notable points and notable lines with their coordinates in
a contemporary publication [3].



36 C.F. Parry

4. Theisogonal tripolar conic ¢

Now consider a poin#x(ps, g2, 72) on the isogonal tripolar of (p1,q1,71),
i.e., the line

p1: pra+qf+riy=0.

Obviously P, lies on the isogonal tripolar o, since the equality;ps + q1g2 +
riro = 0 is the condition for both incidences. Furthermore, the lihé&, has
equation

(qim2 — q@ar1)a + (r1p2 — m2p1) B + (P1g2 — p2q1)y =0,

while the pointp1 M p2 has coordinate$q1r2 — qor1,T1P2 — T2P1,P1q2 — pgql).

It follows thatt = P P, is the isogonal tripolar of" = p; N p2. These isogo-

nal tripolars immediately suggest the classical polar reciprocal relationships of a
geometrical conic. In fact, the trianglg P, 1" has the analogous properties of a
self-conjugate triangle with respect to a conic, since each side of tridghgld”

is the isogonal tripolar of the opposite vertex. This means that a significant conic
could be drawn self-polar to trianglg P,T. But an infinite number of conics

can be drawn self-polar to a given triangle; and a further point with its polar are
required to identify a unique conic [5]. We can select an arbitrary pBintith

its isogonal tripolamps for this purpose. Now the equation to the general conic in
trilinear coordinates is [4]

S: la? + mfB? + ny? + 2f By + 29va + 2ha3 = 0
and the polar o, (p1, ¢1, 1) with respect taS is

si: (Ipr + hgi + gri)o+ (hpr +mai + fr1)B + (gp1 + fq1 +nry)y = 0.

By definition we propose that far= 1, 2, 3, the linesp; ands; coincide, so that
the line coordinates gf; ands; must be proportional; i.e.,

Ipi + hqi+gri _ hpi +mgi + fri _ gpi + fqi + 0
bi qi T '

Solving these three sets of simultaneous equations, after some manipulation we
find thatl = m = nandf = g = h = 0, so that the equation of the required conic
is o + 32 + % = 0. This we designate thisogonal tripolar conic .

From the analysi® is the unique conic which reciprocates the poiRtsP»,
Ps to the linespy, p2, p3. But any set of points, P;, P, with the corresponding
isogonal tripolarsp;, p;, px, could have been chosen, leading to the same equation
for the reciprocal conic. We conclude thiéie isogonal tripolar of any point P
in the plane ABC is the polar of P with respect to ®. Any triangle B P;T}, with
T, = p; N p; is self-conjugate with respect . In particular, the basic triangle
ABC is self-conjugate with respect f, since each side is the isogonal tripolar of
its opposite vertex.

From the form of the equation® + 3? + v = 0, the isogonal tripolar conic
® is obviously an imaginary conic. So the conic exists on the complex projective
plane. However, it will be shown that the imaginary conic has a real center and real
axes; and thad is the reciprocal conic of a pair of notable real conics.
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5. Thecenter of ®

To find the center ofb, we recall that the polar of the center of a conic with
respect to that conic is the line at infinfy, which we have already identified as
k: aa+ b8+ ¢y = 0, the isogonal tripolar of the symmedian pokita, b, c). So
the center ofb and the center of its director circle are situate&at-rom Gaskin’s
Theorem, the director circle of a conic is orthogonal to the circumcircle of every
self-conjugate triangle. Choosing the basic trianglBC as the self-conjugate
triangle with circumcente) and circumradiusk, we have/ + R? = OK?,
wherep is the director radius ob. But it is known [2] thati® — OK? = 3.2,

wherey = —

abe is the radius of the cosine circle dfBC. From this,
a? 4 b? + 2

. . abc
PV =V

6. Somelemmas

To locate the axes ob, some preliminary results are required which can be
found in the literature [1] or obtained by analysis.

Lemmal. If adiameter of the circumcircle of ABC meetsithg circumcircle at X,
Y, then the isogonal conjugates of X and Y (designated X, Y') lie on the line at
infinity; and for arbitrary P, theline PX and PY are perpendicular.

Here is a special case.

Lemma 2. If the chosen diameter is the Euler line OGH, then XY lie on the
asymptotes of Jerabek’s hyperbola 7, which is the locus of the isogonal conjugate
of a variable point on the Euler line OGH (Figure 3).

Lemma 3. If the axes of a conic S with center () meets /., at F, I, then the polars
of F, F with respect to S are the perpendicular lines QF, QF; and F, F arethe
only points on ¢, with this property.

Lemmad. If UGV isachord of the circumcircle I' through G meeting I at U, V/,
then the tripolar of U isthe line KV passing through the symmedian point K and
the isogonal conjugate of V.

7. Theaxesof ®

To proceed with the location of the axes ®f we start with the conditions of
Lemma 2 whereX, Y are the common points &#GH andI.

From Lemma 4, sinc& GY are collinear, the tripolars of, Y are respectively
KY, KX, which are perpendicular from Lemma 1. Now from earlier definitions,
the tripolars ofX, Y are the isogonal tripolars &f, Y, so that the isogonal tripo-
lars of X, Y are the perpendiculasY’, K X through the center ob. SinceXY
lie on (o, KX, KY must be the axes 6b from Lemma 3. And these axes are
parallel to the asymptotes ¢f from Lemma 2.
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Figure 3. The Jerabek hyperbola

Now it is known [1] that the asymptotes ¢f are parallel to the axes of the
orthic inconic (Figure 4). The orthic triangle has its verticesfatH,, Hs the feet
of the altitudesAH, BH, C'H. The orthic inconic has its center At and touches
the sides of triangled BC' at the vertices of the orthic triangle. So the axes of the
imaginary conic® coincide with the axes of the real orthic inconic.

Figure 4. The orthic inconic

8. ® asareciprocal conic of two real conics

Although the conicb is imaginary, every real poirf® has a polap with respect
to ®. In particular if P lies on the circumcircld’, its polarp touches Steiner’s
inscribed ellipses with centerGG. This tangency arises from the known theorem
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[1] that the tripolar of any point o#,, touchess. From Lemma 1 this tripolar is
the isogonal tripolar of the corresponding poinffofNow the basic trianglel BC
(which is self-conjugate with respectdg is inscribed inl" and tangent te, which
touches the sides of BC at their midpoints (Figure 5). In the language of classical
geometrical conics, the isogonal tripolar codicis harmonically inscribed t@
and harmoncially circumscribed to. From the tangency described abodejs

the reciprocal conic t&' = o. Furthermore, sincel BC' is self-conjugate with
respect toP, an infinite number of triangles P; P, can be drawn with its vertices
inscribed inI", its sides touching, and self-conjugate with respectdo Since®

is the reciprocal conic of = ¢, for any point ono, its polar with respect t@®
(i.e., its isogonal tripolar) touchds. In particular, if the tangeng toucheso at
T;(us, v, wy) for ¢ = 1,2, 3, thent;, the isogonal tripolar off;, touchesI at P
(Figure 5).

Figure 5

Now, the equation to the circumcircléis a3y + bya + caf = 0. The equation

of the tangent ta" at F,(p;, ¢;, ;) IS
(cqi + bri)a + (ar; + cpi) B + (bp; + aqi)y = 0.
If this tangent coincides with), the isogonal tripolar of;, then the coordinates of
T; are
u; = cq; + bry, v; = ar; + cp;, w; = bp; + ag;. (©)

So, ift; is the tangent ab(p;, ¢;, ;) to I', and simultaneously the isogonal tripolar
of T;, then the coordinates @ are as shown in (3). But this relationship can be
generalized for any in the plane ofABC, since the equation to the polar Bf
with respect td" is identical to the equation to the tangent/afin the particular
case that?, lies onT'). In other words, the isogonal tripolar @f(u;, v;, w;) with
the coordinates shown at (3) is the polarifp;, ¢;, ;) with respect td", for any
P;, T; in the plane ofABC.

9. Theisotomic tripolar conic ¥

To find an alternative description of the transformati®n— 7', we define the
isotomic conjugate and theisotomic tripolar.
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In the foregoing discussion we have used trilinear coordingtes, ) to de-
fine the pointP and its isogonal tripolap. However, we could just as well use
barycentric (areal) coordinateéz, y, z) to defineP. With x = area PBC), y =
area PCA), z = area PAB), andz + y + 2z = area @BC), comparing with
trilinear coordinates of we have a

aq = 2z, bp = 2y, cy = 22.

Using directed areas, i.e., positive afgadBC') when the perpendicular distance
PP is positive the ratio of the areas is sufficient to define(they, =) coordinates
of P,withz : z = y : y = 2 : z. The absolute coordinatgs, y, z) can then be
found from the areal coordinaté¢s, y, z) using the areal identity 4y + 2z = A.
For example, the barycentric coordinatesAf!, 1, O, H, G, K are A(1,0,0),
I(a,b,c), Il(—a, b, c), O(acos A,bcos B,ccosC), H(asec A,bsec B, csecC),
G(1,1,1), K(a?,b%, ) respectively.

In this barycentrlc system we can identity the coordlnaﬁe@ z ) of the iso-

tomlc conjugateP of P as shown in Figure 6, whetB L— L’C CM= M’A

AN= N’B We find by the same procedure that = yy' = 22’ for P, P, so

that the areal coordinates Bfare(l, 1, %) explaining the alternative description

that P is the triangular reciprocal aP.

A

Figure 6

Following the same argument as heretofore, we can definadtoenic tripolar
of P(p,q,r) as the tripolar of with barycentric equatiopz + qy + rz = 0, and
then identify the imaginarisotomic tripolar conic ¥ with equations? 42+ 2% =
0. The center ofl is the median poin(1, 1, 1) since the isotomic tripolar aF is
the /., with barycentric equation + y + z = 0. By analogous procedure we can
find the axes of which coincide with the real axes of Steiner’s inscribed ellipse
g.

Again, we find that the basic triangléBC is self conjugate with respect b,
and from Gaskin’s Theorem, the radius of the imaginary director citdtegiven
by d? + R? = OG?. From this,d*> = OG? — R* = —1(a® + b + ¢?), giving

d:%\/aQ—l—bQ—l—c?.
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In the analogous case to Figure 5, we find that in Figure 77 igf a variable point
on Steiner’s circum-ellipsé@ (with centerG), then the isotomic tripolar oP is
tangent tar, andV¥ is the reciprocal conic a&f = o. Generalizing this relationship
as before, we find that the polar Bf(pgr) with respect td is the isotomic tripolar
of T with barycentric coordinateg+r, r+p, p+q) Furthermore we can describe

the transformation” — T in vector geometry aBG 2 GT or more succinctly
thatT is the complement aP [2]. The inverse transformatiofl — P is given by

TG= % G P, whereP is the anticomplement &f. So the transformation of point
T to the isotomic tripolat can be described as
t isotomic tripole ofl"
polar of T with respect tol
polar of P with respect t@,

where PG= 2 GT. In other words, the transformation of a poiRtp, ¢, r) to
its isotomic tripolarpz + qy + rz = 0 is a dilatation(G, —2) followed by polar
reciprocation irf, Steiner’s circum-ellipse.

Figure 7

To find the corresponding transformation of a point to its isogonal tripolar, we
recall that the polar oP(p, ¢, r) with respect tal" is the isogonal tripolar of’,

whereT" has trilinear coordinategq + br, ar + cp, bp + aq) from (3). Now,P, the
isotomic conjugate of the isogonal conjugateythas coordinate§s, 7%, =) [3].

PuttingR = P, the complement of? has coordinateécq + br, ar + ¢p, bp + aq),
which are the coordinates Gf. So the transformation of poiff to its isogonal
tripolart can be described as

t = isogonal tripolar ofl’
polar of T" with respect tad
polar of P with respect td",

whereRG= 2 GT,andP = }_% the isogonal conjugate of the isotomic conjugate
of R. In other words, the transformation of a poiRtwith trilinear coordinates
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(p,q,r) to its isogonal tripolapa + ¢85 + ry = 0) is a dilatation(G, —2), fol-
lowed by isotomic transformation, then isogonal transformation, and finally polar
reciprocation in the circumcirclg.

We conclude with the remark that the two well known systems of homogeneous
coordinates, viz. trilineafa, 3,~) and barycentridz, y, z), generate two analo-
gous imaginary conic® and ¥, whose real centers and real axes coincide with
the corresponding elements of notable real inconics of the triangle. In each case,
the imaginary conic reciprocates an arbitrary pdmto the corresponding linp,
whose line coordinates are identical to the point coordinateB.ofAnd in each
case, reciprocation in the imaginary conic is the equivalent of well known transfor-
mations of the real plane.
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