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Concurrency of Four Euler Lines
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Abstract. Using tripolar coordinates, we prove thatHfis a point in the plane

of triangle ABC such that the Euler lines of trianglésBC, APC and ABP

are concurrent, then their intersection lies on the Euler line of triaddghe.

The same is true for the Brocard axes and the lines joining the circumcenters to
the respective incenters. We also prove that the locuB @dr which the four
Euler lines concur is the same as that for which the four Brocard axes concur.
These results are extended to a fandlly of lines through the circumcenter. The
locus of P for which the fourZ,, lines of ABC, PBC, APC and ABP concur

is always a curve through 15 finite real points, which we identify.

1. Four line concurrency

Consider a triangled BC with incenter!. It is well known [13] that the Euler
lines of the triangled BC', AIC and ABI concur at a point on the Euler line of
ABC, the Schiffler point with homogeneous barycentric coordinates

(a(s—a) b(s—b) c(s—c)>.

b+c ~ c+a  a+b

There are other notable points which we can substitute for the incenter, so that a
similar statement can be proven relatively easily. Specifically, we have the follow-
ing interesting theorem.

Theorem 1. Let P be a point in the plane of triangle ABC' such that the Euler
lines of the component triangles PBC, APC and ABP are concurrent. Then the
point of concurrency also lies on the Euler line of triangle ABC.

When one tries to prove this theorem with homogeneous coordinates, calcula-
tions turn out to be rather tedious, as one of us has noted [14]. We present an easy
analytic proof, making use of tripolar coordinates. The same method applies if we
replace the Euler lines by the Brocard axes or@helines joining the circumcen-
ters to the corresponding incenters.

Publication Date: April 9, 2001. Communicating Editor: Jean-Pierre Ehrmann.
IThis appears aX>»; in Kimberling’s list [7]. In the expressions of the coordinatestands for
the semiperimeter of the triangle.
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2. Tripolar coordinates

Given triangleABC with BC = a, CA = b, and AB = ¢, consider a point
P whose distances from the vertices d&d = \, PB = pand PC = v. The
precise relationship amonyg ., andv dates back to Euler [4]:

(,u2_’_y2_a2 2)\2+(V2—|—)\2—62)2u2—|—(/\2+u2—62)2112
_(MQ +V2 _a2)(1/2 +)\2 _bQ)()\2 _|_'u2 —62) —4)\2,U2V2 = 0.

See also [1, 2]. Geometers in the 19th century referred to the tiiple /) as the
tripolar coordinates ofP. A comprehensive introduction can be found in [£2].
This series begins with the following easy theorem.

Proposition 2. An equation of the form ¢X? + mu? + nv? + ¢ = 0 represents a
circle or aline according as ¢ + m + n isnonzero or otherwise.

The center of the circle has homogeneous barycentric coordiffates. : n).
If £+ m + n = 0, the line is orthogonal to the directidié : m : n). Among the
applications one finds the equation of the Euler line in tripolar coordinates [op. cit.
§26]. 3

Proposition 3. Thetripolar equation of the Euler lineis
(b — AN+ (2 — a)p® + (a* — *)* = 0. (1)

We defer the proof of this proposition & below. Meanwhile, note how this
applies to give a simple proof of Theorem 1.

3. Proof of Theorem 1

Let P be a point with tripolar coordinates\, x1, ) such that the Euler lines of
trianglesPBC, APC and ABP intersect at a poinf) with tripolar coordinates
(N, 1/, V"), We denote the distandeq by p.

Applying Proposition 3 to the triangleBBC', APC and ABP, we have

(V2 _ 'u2)p2+('u2 _ a2)u'2 + (a2 o V2)l//2: 0’

(bQ o )\2))\/2 +()\2 _ 1/2)p2 + (1/2 _ b2)yl2: 0’
()\2 o 62))\/2—1—(62 _MQ)'UIQ + ('u2 _ )\2)p2: 0.

Adding up these equations, we obtain (1) wkhy', v/ in lieu of A, u, v. This
shows that) lies on the Euler line oABC.

2[5] and [8] are good references on tripolar coordinates.

3The tripolar equations of the lines §35 — 7 below can be written down from the barycentric
equations of these lines. The calculations in these sections, however, do not make use of these
barycentric equations.
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Figure 1

4, Tripolar equations of linesthrough the circumcenter

O. Bottema [2, pp.37—38] has given a simple derivation of the equation of the
Euler line in tripolar coordinates. He began with the observation that since the
point-circles

N =0, u? =0, V=0,
are all orthogonal to the circumcirddor arbitraryty, t9, t3, the equation
tl)\2 + t2,u2 + t3V2 =0 (2)

represents a circle orthogonal to the circumcircle. By Proposition 2, this represents
a line through the circumcenter if and onlytif+ ¢5 + ¢t3 = 0.

5. Tripolar eguation of the Euler line

Consider the centroid; of triangle ABC. By the Apollonius theorem, and the
fact thatG divides each median in the rati: 1, it is easy to see that the tripolar
coordinates of satisfy

AN op? 2 =202 4262 —a? 1 2¢% + 20 — b? - 2a% + 2% — A

It follows that the Euler lineDG is defined by (2) withy, o, t3 satisfying

t1 + tog + tg = 0,
(202 + 22 —a®)t; + (22 +2a® - Dty + (2a2 + 202 - Aty = 0,
or tyitgits=0>—c2: % —a%:a® — b

This completes the proof of Proposition 3.

“These point-circles are evidently the vertices of triangC.
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6. Tripolar equation of the OI-line
For the incenter, we have

A B C s—a s—b s—c
A= 2. 2= 2 = : :
uoiv cse 5 csc 5 csc 5 p 2 p

wheres = %< The tripolar equation of th@I-line is given by (2) witht, ¢,
t3 satisfying

s—a s—b s —
t1+1to+t3 =0, t1 + to +
a b c

C
t3 = 0.

From theset1 ity ity =
OlI-lineis

;—1.1_1.1_2 and the tripolar equation of the

1 1 1 1 1 1
S 1 NI e M2+ o2 =0.
b ¢ c a a b

The same reasoning i8B yields Theorem 1 with the Euler lines replaced by the
OlI-lines.

7. Tripolar equation of the Brocard axis

The Brocard axis is the line joining the circumcenter to the symmedian point.
Since this line contains the two isodynamic points, whose tripolar coordinates, by
definition, satisfy

1 1 1

Arpiv=—:—-:—
BVv=a'p ¢

it is easy to see that the tripolar equation of the Brocard axis is

1 1\, [1 1Y\, 1 1\,
(ﬁ‘?)“(?‘@)”*(@‘ﬁ)””'

The same reasoning i8B yields Theorem 1 with the Euler lines replaced by the
Brocard axes.

8. Thelines .,

The resemblance of the tripolar equation$§b — 7 suggests consideration of
the family of lines through the circumcenter:

Ly : (b = N2+ (" — a™)p? + (a™ — b")? =0,
for nonzero integers. The Euler line, the Brocard axis, and tbd-line are re-

spectivelyL,, forn = 2, —2, and—1. In homogeneous barycentric coordinates,

>The same equation can be derived directly from the tripolar distances of the symmedian point:

AK? = % etc. This can be found, for example, in [11, p.118].
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the equation of’,, is®

D (@ =) = (M = )z = 0.

cyclic
The line£; contains the points

2a+b+c:a+2b+c:a+b+2c)
and
(a(b4+¢) = (b—c)? :b(c+a)— (c—a)?:cla+b)— (a—Db)?).

Theorem 1 obviously applies when the Euler lines are replacef], hiyes for a
fixed nonzero integen.

9. Intersection of the £, lines

It is known that the locus aoP for which the Euler linesfy) of trianglesPBC,
APC and ABP are concurrent is the union of the circumcircle and the Neuberg
cubic® See [10, p.200]. Fred Lang [9] has computed the locus for the Brocard axes
(L£_») case, and found exactly the same result. The coincidence of these two loci
is a special case of the following theorem.

Theorem 4. Let n beanonzero integer. The £, lines of triangles PBC, APC and
ABP concur (at a point on £,) if and only if the £_,, lines of the same triangles
concur (at apointon £_,,).

Proof. Consider the component triangl&3C, APC and ABP of a pointP. If
P has tripolar coordinate§€L, M, N), then thel, lines of these triangles have
tripolar equations

L,(PBC) : (N"™ — M™)p? + (M™ — a™)p® 4 (a™ — N")? =0,
L, (APC) : (b — L™A? + (L™ — N™)p? + (N" = b")v? = 0,
L.(ABP) : (L™ — ™A + (" — M™)p? + (M™ — L")p* = 0,

wherep is the distance betwee and a variable point\, i, v)? These equations
can be rewritten as

6This can be obtained from the tripolar equation by putting

N = m(c%ﬂ + (b 4 & = a®)yz + b°2°)
and analogous expressions férandv? obtained by cyclic permutations af b, c andz, y, z.
These are respectively the midpoint between the incenteds3sf’ and its medial triangle, and
the symmedian point of the excentral triangle of the medial triangle.
8The Neuberg cubic is defined as the locus of poiAuch that the line joining to its isogonal
conjugate is parallel to the Euler line.

9See Figure 1, with\, x, v replaced byL, M, N, and\, i, v/ by \, u, v respectively.
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- (M"—a")(p*—p®) + (N"—=a")(p*-1v?) = 0,
(L~ b)(p? ~ 2) — Nt = 0,
_(Ln_cn)(pQ_)\Q) + (Mn Cn)(pQ—lJ/Q) — ((:)3)

One trivial solution to these equationsds= A\ = ;. = v, which occurs only
when the variable point is the circumcentywith P on the circumcircle. In this
case theC,, lines all concur at the poir®, for all n. Otherwise, we have a solution
to (3) with at least one of the valug$— \2, p? — 12, andp? — v? being non-zero.
And the condition for a solution of this kind is

(L7 = ) (M = )(N" —a") = (L = ") (M" — a")(N" = 1), (4)

This condition is clearly necessary. Conversely, takeatisfying (4). This says
that (3), as linear homogeneous equationgin \2, p> — 12, andp? — 12, have

a nontrivial solution(u, v, w), which is determined up to a scalar multiple. Then
the equations of the&, lines of trianglesABP and PBC can be rewritten as
(L -Hxp?-1lxA24+1xB>=0and(i-L)xP?-1xB?+1lXxC?*=0.

If X is a point common to these two lines, then it satisfies
XP?—-XA* XP?-XB? XP?-XC?
u N v N w

and also lies on th&,, line of triangle APC.
Note that (4) is clearly equivalent to

A AN AN AN _ L 1N/ 1N 1 1
» b )\ M e J\ N2 qv) \Ln )\ M av)\Nn )’

which, by exactly the same reasoning, is the concurrency condition fof the
lines of the same triangles. O

Coroallary 5. Thelocus of P for which the Brocard axes of triangles PBC', APC
and ABP are concurrent (at a point on the Brocard axis of triangle ABC) isthe
union of the circumcircle and the Neuberg cubic.

LetC,, be the curve with tripolar equation
(N = 5" = )" = a") = (A" = ") (" = ") (" = b7,
so that together with the circumcircle, it constitutes the locus of patrfte which

the four £, lines of trianglesPBC, APC, ABP and ABC concurt® The sym-
metry of equation (4) leads to the following interesting fact.

Corollary 6. If P lieson the C, curve of triangle ABC, then A (respectively B,
C) lieson the C,, curve of triangle PBC' (respectively APC', ABP).

Remark. The equation of,, can also be written in one of the following forms:
Z @O =" (a" N+ ") =0
cyclic

10By Theorem 4, it is enough to considerpositive.
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or
)\n+an Mn+bn Vn_|_cn
a \" b um™ c"v" | =0.
1 1 1

10. Points common to C,, curves

Proposition 7. A complete list of finite real points common to all C, curvesis as
follows:
(1) the vertices A, B, C' and their reflections on the respective opposite side,
(2) the apexes of the six equilateral triangles erected on the sides of ABC,
(3) the circumcenter, and
(4) the two isodynamic paints.

Proof. Itis easy to see that each of these points lie§,diar every positive integer
n. For the isodynamic points, recall that: 4 : v =1 : 1 : 1. We show that;;

andC, meet precisely in these 15 points. From their equations

A=b)(p—c)(v —a) = (A= c)(p—a)(v —b) (5)

and

(A2 =) (= A (? = a®) = (V= &)(p? = a®)(V* = 1?). (6)
If both sides of (5) are zero, it is easy to list the various cases. For example,
solutions likeh = b, u = a lead to a vertex and its reflection through the opposite
side (in this cas€’ and its reflection inAB); solutions likeA = b, v = b lead
to the apexes of equilateral triangles erected on the sidd$3a@f (in this case on
AC). Otherwise we can factor and divide, getting

A+ (p+c)v+a)=A+c)(n+a)v+Db).

Together with (5), this is easy to solve. The only solutions in this case ate
p=vandX:p:v==>1:3:1 giving respectively? = O and the isodynamic

points. a

Remarks. (1) If P is any of the points listed above, then this result says that the
trianglesABC, PBC, APC, andABP have concurrent, lines, for all non-zero
integersn. There is no degeneracy in the case wheiie an isodynamic point, and
we then get an infinite sequence of four-fold concurrences.

(2) The curveC, has degree 7, and contains the two circular points at infinity,
each of multiplicity 3. These, together with the 15 finite real points above, account
for all 21 intersections of, and(;,.

11. Intersections of Euler linesand of Brocard axes
Forn = £2, the curveC, is the Neuberg cubic
Z (0% = )2 + a?(b* 4 2) — 2aY)z(Py? — b22?) =0
cyclic

in homogeneous barycentric coordinates. Apart from the points listed in Proposi-
tion 7, this cubic contains the following notable points: the orthocenter, incenter
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and excenters, the Fermat points, and the Parry reflection'pofnsummary of
interesting properties of the Neuberg cubic can be found in [3]. Below we list the
corresponding points of concurrency, giving their coordinates. For points like the
Fermat points and Napoleon points resulting from erecting equilateral triangles on
the sides, we label the points by= +1 or —1 according as the equilateral trian-
gles are constructed exterior taBC' or otherwise. AlsoA stands for the area of
triangle ABC'. For functions likeF;, F;, F. indexed bya, b, ¢, we obtainF; and

F, from F, by cyclic permutations o, b, c.

| P | Intersection of Euler lineg Intersection of Brocard axes |

Circumcenter

Circumcenter

Circumcenter

Reflection of vertex
on opposite side

Intercept of Euler line
on the side line

Intercept of Brocard axis
on the side line

Orthocenter Nine-point center Orthocenter of orthic triangle
Incenter Schiffler point Isogonal conjugate of Spieker center
Excenters
as . b(s—c) , c(s=b) a®> . v .2
I, = (—a b:c) (W CTe—a - TM) (HQ ‘e—a " —a—i—b)
Iy =(a: —b ) (0(8*0). bs .C(S*a)) ( a? . b2 . cz)
b= ¢ —b+c " cta ° a—b —b+c " cta " a—b
I.= a(s=b) , b(s—a) . _cs a®> . b2 . 2
_( C) ( b—c —cta * a+b) (b—c " —cta ” a+b)
e-Fermat pomt centroid Isogonal conjugate of

(—e¢)-Napoleon point
Isogonal conjugate of
e-Napoleon point

e-isodynamic point

Apexes of e-equilateral triangles erected on the sides of ABC. Let P be the apex
of an equilateral triangle erected the sil€’. This has coordinates

4 4
—2a2:a2+b2—62+6~—A:c2+a2—b2+e-—A>.
< V3 V3
The intersection of the Euler lines has coordinates
4
< —a?(a®> = v*)(a® - ) : (a® =) (a®*? +e- —=A(a® + > - )
V3
4
2 2 2 2 2 2 2
a®—c)a"c"+e- —=A(c"+a"—b ,
(@ - A+ e Al >>>

and the Brocard axis intersection is the point
(a a? —b?)(a® — P)(—e(d® + % — a®) + 4V3A)

b2 (a® — b%)(—e(a* + 2b* + 3¢* — 5b%c? — 4c%a? — 3d%b?) + 4V3A(E? + a?))
A(a® — ) (—e(a* + 3b* + 2¢* — 5b%c? — 3c%a® — 4a%b?) + 4V/3A(a® + b2))>.

Bernard Gibert has found that the Fermat points of the anticomplementary triang!8of
also lie on the Neuberg cubic. These are the palas; and Xe17 in [7]. Their isogonal conjugates
(in triangle ABC) clearly lie on the Neuberg cubic too. Ed.
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Isodynamic points. For thee-isodynamic point, the Euler line intersections are

(a®(V302? + € - AA (D + 2 — d?))
(D2(V3Aa? + e - AN (P 4 a® — b?))
cA(V3a%0? + e - AA(a® + 02 = 2))).
These points divide the segme&rO harmonically in the rati® sin Asin BsinC :

3v/3.12 The Brocard axis intersections for the Fermat points and the isodynamic
points are illustrated in Figure 2.

Figure 2

The Parry reflection point. This is the reflection of the circumcenter in the focus
of the Kiepert parabol&’ Its coordinates, and those of the Euler line and Brocard
axis intersections, can be described with the aids of three functions.

(1) Parry reflection point{a®P, : b*P, : ¢*P.),

(2) Euler line intersectionta® P, f, : b Py fy, : ¢?P.f.),

(3) Brocard axis intersection{u? f,g, : b*fogs : ¢ fegc), Where

P, = a®—4a%0* + ) + a*(6b* +b*c? + 6c*)

—a?(b? + c)(4b* — 5b%c? + 4ct) + (b2 — )2 (b + 4b%* + ¢,
fo = a®—=3a*(b* 4+ ) +a®(3b* — b2 + 3c*) — (b — )2 (b + ),
go = 5a®—14a°(b* + c*) + a*(120* + 176%* + 12¢%)

—a?(b? + ) (20 + ) (b% + 2¢%) — (b — ).

12These coordinates, and those of the Brocard axis intersections, can be calculated by using the
fact that triangleP BC has(—e¢)-isodynamic point at the verteA and circumcenter at the point

(a2 (b +c2—a?)—e-4V3A) : D2 ((P+a?—b%)+e-4V3A) : A ((a®+b*—P)+e-4V3A)).

®*The Parry reflection point is the poifxtsgog in [6]. The focus of the Kiepert parabola is the point

. . . . 2 2 2
on the circumcircle with coordinatégy;— : 62"_(12 D)
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This completes the identification of the Euler line and Brocard axis intersections
for points on the Neuberg cubic. The identification of the locus fordhgeprob-
lems is significantly harder. Indeed, we do not know of any interesting points on
this locus, except those listed in Proposition 7.
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