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Abstract. Pointwise products and quotients, defined in terms of barycentric and
trilinear coordinates, are extended to produetd” and quotient§’/ P, where P

is a point and” is a curve. In trilinears, for example,lit, denotes the circumcir-

cle, thenP - Ty is a parabola if and only iP lies on the Steiner inscribed ellipse.
Barycentric division by the triangle centéf; o carriesl'o onto the Kiepert hy-
perbolal”; if P is onTy, then the point’’ = P/X1 is the point, other than

the Tarry point,Xos, in which the lineP Xgs meetsl”, and if2; and); denote

the Brocard points, thel?’ Q1 |/|P’'Q2| = |PQ1|/|PQ:|; that is, P’ and P lie

on the same Apollonian circle with respect® and(2,.

1. Introduction

Paul Yiu [7] gives a magnificent construction for a prod&ct() of points in the
plane of triangleABC. If

P=ay:B1:v and @ =az:[2:72 (1)
are representations in homogeneous barycentric coordinates, then the Yiu product
is given by
P-Q=aiaz: 1B : M7 (2)
whenever{ a; ag, £102, 7172} # {0}.

Cyril Parry [3] constructs an analogous product using trilinear coordinates. In
view of the applicability of both the Yiu and Parry products, the notation in equa-
tions (1) and (2) will represent general homogeneous coordinates, as in [6, Chapter
1], unless otherwise noted. We also define the quotient

P/Q = cnfaya : fiyeas : yiaafe

wheneverQ ¢ {A, B, C'}. Specialization of coordinates will be communicated by
phrases such as those indicated here:

multiplication
barycentric product
{ trilinear } division
quotient
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If S'is a set of points, the® - S := {P-Q : @ € S}. In particular, ifS' is a
curvel’, thenP - T andI'/ P are curves, except for degenerate cases, such as when
Pe{A B,C}.

In all that follows, supposé® = p : ¢ : r is a point not on a sideline of triangle
ABC, so thatpgr # 0, and consequently//P = % : g 2 forallU =u:v:w.

Example 1. If T is a linefa + mfB + ny = 0, thenP - ' is the line(¢/p)a +

(m/q)B+ (n/r)y = 0andl'/P is the linepla + gm3 + rny = 0. Given the line
QR of pointsQ andR, itis easy to check tha? - QR is the line of P- Q andP - R.

In particular,P - AABC = AABC, and if T' is a cevian triangle, theR - T'is a
cevian triangle.

2. Conics and Cubics

Each conid" in the plane of triangled BC'is given by an equation of the form
ua? + vB% + wy? 4 2f 67 + 2gva + 2haf = 0. 3)
ThatP - T is the conic
(u/p*)a? + (v/q*) 5 + (w/r* )7 +2(f [qr) By + 2(9/rp)va +2(h/pg)a3 =40
is clear, sincex : (3 : ~ satifies (3) if and only ipa : g0 : rv satisfies (4). IrE t)he
case of a circumconit given in general form by

h
Foo by, (5)
o By
the productP - I" is the circumconic
h
p_f + % + T_ =0
o B
Thus, if X is the point such thaX - T'is a given circumconig + 5+5=0, then
X=y.2.u
f g h

Example 2. In trilinears, the circumconi€’ in (5) is the isogonal transform of the
line L given by fa+ g0 + hy = 0. The isogonal transform aP - L isT'/P.

Example3. LetU = u : v : w. The conicW (U) given in [1, p. 238] by
u?a? + 02 3% + wH? — 2ewBy — 2wuya — 2uvaB =0
is inscribed in triangleA BC'. The conicP - W (U) given by
(u/p)*a®+(v/q)? B2+ (w/r)*y* =2(vw/qr) By —2(wu/rp)ya—2(uwv/pg)af = 0
is the inscribed coni&V (U/P). In trilinears, we start witi® = incircle, given by
u=u(a,b,c) =alb+c—a),v=u(b,ca),w=u(ca,b),

and find?

IThe conics in Example 3 are discussed in [1, p.238] as examples of a type dendié@hy,
including incircle =W (Xss), Steiner inscribed ellipse B (X5 ), Kiepert parabola 3/ ( X512), and
Yff parabola =W (Xe47). A list of X; including trilinears, barycentrics, and remarks is given in [2].
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| Conic | Trilinear product Barycentric produck
Steiner inscribed ellipse Xo-T Xg- T
Kiepert parabola Xeaz - T Xoas - T
Yff parabola Xgaqa - T Xeag - T

Example 4. Here we combine notions from Examples 1-3. The circumciigle,

may be regarded as a special circumconic, and every circumconic has the form
P -Ty. We ask for the locus of a poir® for which the circumconic® - I is a
parabola. As such a conic is the isogonal transform of a line tangedit tee

begin with this statement of the problem: filtdl= p : ¢ : » (trilinears) for which

the line L given by2 + % + % = 0 meetsl’y, given by & + % + 5 = 0 in exactly

one point. Eliminatingy leads to

a er —ap —bq £ /(ap + bg — cr)? — 4abpg

B 2bp
We write the discriminant as

D(p,q,r) = a’p* + b*¢* + *r? — 2beqr — 2carp — 2abpg.
In view of Example 3 and [5, p.81], we conclude thaillif( X5 ) denotes the Steiner
inscribed ellipse, with trilinear equatioh(«, 3,~) = 0, then

hyperbola inside W (Xg)
P.Tyisa{ parabola » according ad’ lies on W(Xs)
ellipse outside W (Xp)

(6)

Returning to the case thétis tangent td, it is easy to check that the point of
tangency i X;/P)©Xg. (See Example 7 for Ceva conjugacy, denotecchy

If the method used to obtain statement (6) is applied to barycentric multiplica-
tion, then a similar conclusion is reached, in which the rol&gfX;) is replaced
by the inscribed conic whose barycentric equation is

o+ 32 4+~2 =28y — 2va— 203 =0,
that is, the ellipséV (X>).
Example 5. Suppose point® and( are given in trilinears:P = p : ¢ : r, and

U =wu:v:w. Weshallfind the locus of a poilf = «: 5 : v such thatP - X
lies on the lineJ X. This on-lying is equivalent to the determinant equation

u v w
a B v |=0,
pa qf 1y

expressible as a circumconic:

ulg=r)  vr=p) wlk-qd _, @
o p v
One may start with the lin&; P, form its isogonal transforr, and then recognize

(7) asU - T'. For example, in trilinears, equation (7) represents the hyperbolas of
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Kiepert, Jerabek, and Feuerbach accordingfad/) = (X31, X75), (X6, Xus),
and (X1, X3); or, in barycentrics, according &a®,U) = (Xs, X76), (X1, X3),
and(Xg,X(;g).

Example 6. Again in trilinears, lefl” be the self-isogonal cubig (U) given in [1,
p. 240] by

ua(B? —7%) +vB(y* — a®) + wy(a? — %) = 0.
This is the locus of pointX such thatX, X; /X, andU are collinear; the point/
is called thepivot of Z(U). The quotient’/ P is the cubic

upa(q® 8% — r°7*) + vgB(r*y* — p*a®) + wry(p®e® — %) = 0.
Although T'/P is not generally self-isogonal, it is self-conjugate under ife
isoconjugacy defined (e.g., [4]) bY — X1 /(X - P?).

Example7. Let X (© P denote theX-Ceva conjugate oP, defined in [1, p.57] for
X=zx:y:zandP=p:q:rby

r r r
xoP=p(-L4+ 2450y 24248y DBy gy

Assume thatX # P. Itis easy to check that the locus of a poikitfor which
X@©P lies on the lineX P is given by

L N e s SR e S

- =)+—(5—-——=)+—-(=—-=)=0. 8

()t ) s =) =0 ®)
In trilinears, equation (8) represents the prodBefl” wherel is the cubicZ(X;).
The locus ofX for which P©X lies on X P is also the cubic (8).

(07

3. Brocard Points and Apollonian Circles

Here we discuss some special properties of the triangle celigriéhe Tarry
point) andX; g (the focus of the Kiepert parabolaXys is the point, other thad,
B, C, that lies on both the circumcircle and the Kiepert hyperbola.

Letw be the Brocard angle, given by

cotw = cot A + cot B + cot C.
In trilinears,
Xos = sec(A+w):sec(B+w):sec(C+w),
a ) b ) c
b2 —c?2 2 —a?  a?—b?
Theorem. Barycentric division by X7 carriesthe circumcircle I'y onto the Kiepert
hyperbola I". For every point P on I'y, the line joining P to the Tarry point Xgg
(viz, thetangent at Xog if P = Xog) intersectsI” againat P’ = P/X11¢. Further-

more, P/ X110 lies on the Apollonian circle of P with respect to the two Brocard
points 2, and €2,; that is

X110

P'y| [Py
1P|~ |P

(9)
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Figure 1

Proof. In barycentricsI'y andI” are given by

2 2 2 b2 _ 2 2 2 2 _p2
a—+—+c—:0and C+c a+a =0,
a B v a B ol

and, also in barycentrics,

a ‘ b c

X110 = : :
R_2 22— a_12

so thatl” = Fo/XH().
For the remainder of the proof, we use trilinears. A parametric representation
for I'y is given by

P=P(t)=a(l —t):bt:ct(t —1), (20)
for —oco < t < 00, and the barycentric produét/ X is given in trilinears by
- Z—ad® a’® —b?
1-—t it (it —1
(1-0— i =)

That this point lies on lineP Xyg is equivalent to the following easily verified
identity:
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2

(1 _t)b2;(32 tCQZa t(t_ 1)@22b2
a(l —1t) bt ct(t —1) =0.
sec(A+w) sec(B+w) sec(C+w)
We turn now to a formula [1, p.31] for the distance between two points expressed
in normalized trilinears («, 3,~) and(c/, 3, 7/):

%\/abc[a cos Al — /)2 +bcosB(B— )2 +ccosC(y—7")?%, (11)
whereo denotes the area of triangeBC'. Let
D = A2 — (A +ad% -t +d?
S = a®b? + b3 + Ad
Normalized trilinears fof10) and the two Brocard points follow:
P = ((1 —t)ha,thb,t(t — 1)hc),
whereh = 22, and

0, = (E M,M) Qy = (Mj@j@)j

b’ ¢ a c a b

where andy;, = 24k
Abbreviatea cos A, bcos B, ccos C, and1 — t asd’, V/, ¢, andt’ respectively,
and write

t'ha — hyc\? thd — hia\ 2 tt'he — hib\ 2
E = d <%> 4+ (%) + <%> , (12)

t'ha — hib\? thb — hyc\ 2 t'he — hia\ 2
F = d <%> + v <Tlc> +d (%) . (13)

Equation (11) then gives
|PO4)2  E

=—. 14

|PQy2  F (14)

In (12) and (13), replaceos A by (¥ + ¢ — a?)/2bc, and similarly forcos B and

cos C, obtaining from (14) the following:

P2 t2a® —t(a* +b* — ) + b?
|PQol2 1202 — (b2 4 2 — a?) + 2

2Sometimes trilinear coordinates are called normal coordinates. We prefer “trilinears”, so that
we can say “normalized trilinears,” not “normalized normals.” One might say that the latter double
usage of “normal” can be avoided by saying “actual normal distances”, but this would be unsuitable
for normalization of points at infinity. Another reason for retaining “trilinear” and “quadriplanar’—
not replacing both with “normal’— is that these two terms distinguish between lines and planes as
the objects with respect to which normal distances are defined. In discussing points relative to a
tetrahedron, for example, one could have both trilinears and quadriplanars in the same sentence.
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Note that if the numerator in the last fraction is written &, a, b, ¢), then the
denominator ig?f(1,c, b, a). Similarly,
|P'Qy |2 _g(t,a,b,c)

[P tig(+,c,b,a)

where
g(t,a,b,c) = they + t3e3 + t2eq + tey + e,

and
e = a'ba®— )2,
es = a*(a® —b?)(° + 4 2a%b?c? — 2a"b? — 2a%ct — 2b%ct + a'c? 4 a?bh),
ea = b0 — PP 4+ a?A(P - a®)? + b (a® + 20° — 3a%b?)

+ a0 (b + ¢t — 20t — 4022 + 222 + 24°1?),
er = b =) (a® 4+ L =302 + 20*? — 2a*b? — 20 + 26203 + a?b?),
eo = bAEW0E—A)2

One may now verify directly, using a computer algebra system, or manually with
plenty of paper, that

1 1
t2f(t7 a, b7 C)g(;a ¢, ba CL) = f(;7 C, b7 a)g(t, a, b7 C)7
which is equivalent to the required equation (9). O
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