Forum Geometricorum
         VOLUME 2 (2002)

Return to Forum Geometricorum Home Page

  1. Jean-Pierre Ehrmann, A pair of Kiepert hyperbolas, pp.1--4.
  2. Floor van Lamoen, Some concurrencies from Tucker hexagons, pp.5--13.
  3. Jean-Pierre Ehrmann, Congruent inscribed rectangles, pp.15--19.
  4. Clark Kimberling, Collineation, conjugacies, and cubics, pp.21--32.
  5. Floor van Lamoen, Equilateral chordal triangles, pp.33--37.
  6. Gilles Boutte, The Napoleon configuration, pp.39--46.
  7. Bernard Gibert, The Lemoine cubic and its generalizations, pp.47--63.
  8. Kurt Hofstetter, A simple construction of the golden section, pp.65--66.
  9. Lawrence Evans,  A rapid construction of some triangle centers, pp.67--70.
  10. Peter Yff, A generalization of the Tucker circles, pp.71--87.
  11. Lawrence Evans, A conic through six triangle centers, pp.89--92.
  12. Benedetto Scimemi, Paper-folding and Euler's theorem revisited, pp.93--104.
  13. Zvonko Cerin, Loci related to variable flanks, pp.105--113.
  14. Barukh Ziv, Napoleon-like configurations and sequencs of triangles, pp.115--128.
  15. Nikolaos Dergiades, An elementary proof of the isoperimetric inequality, pp.129--130.
  16. Nikolaos Dergiades, The perimeter of a cevian triangle, pp.131--134.
  17. Fred Lang, Geometry and group structures on some cubics, pp.135--146.
  18. Charles Thas, On some remarkable concurrences, pp.147--149.
  19. Jean-Pierre Ehrmann and Floor van Lamoen, The Stammler circles, pp.151--161.
  20. Jean-Pierre Ehrmann and Floor van Lamoen, Some similarities associated with pedals, pp.163--166.
  21. K. R. S. Sastry, Brahmagupta quadrilaterals, pp.167--173.
  22. Darij Grinberg and Paul Yiu, The Apollonius circle as a Tucker circle, pp.175--182.
  23. Wilfred Reyes, An application of Thébault's theorem, pp.183--185.