On the Geometry of Equilateral Triangles

József Sándor

Dedicated to the memory of Angela Vasiu (1941-2005)

Abstract

By studying the distances of a point to the sides, respectively the vertices of an equilateral triangle, certain new identities and inequalities are deduced. Some inequalities for the elements of the Pompeiu triangle are also established.

1. Introduction

The equilateral (or regular) triangle has some special properties, generally not valid in an arbitrary triangle. Such surprising properties have been studied by many famous mathematicians, including Viviani, Gergonne, Leibnitz, Van Schooten, Toricelli, Pompeiu, Goormaghtigh, Morley, etc. ([2], [3], [4], [7]). Our aim in this paper is the study of certain identities and inequalities involving the distances of a point to the sides or the vertices of an equilateral triangle. For the sake of completeness, we shall recall some well-known results.
1.1. Let $A B C$ be an equilateral triangle of side length $A B=B C=C A=l$, and height h. Let P be any point in the plane of the triangle. If O is the center of the triangle, then the Leibnitz relation (valid in fact for any triangle) implies that

$$
\begin{equation*}
\sum P A^{2}=3 P O^{2}+\sum O A^{2} . \tag{1}
\end{equation*}
$$

Let $P O=d$ in what follows. Since in our case $O A=O B=O C=R=\frac{l \sqrt{3}}{3}$, we have $\sum O A^{2}=l^{2}$, and (1) gives

$$
\begin{equation*}
\sum P A^{2}=3 d^{2}+l^{2} . \tag{2}
\end{equation*}
$$

Therefore, $\sum P A^{2}=$ constant if and only if $d=$ constant, i.e., when P is on a circle with center O. For a proof by L. Moser via analytical geometry, see [12]. For a proof using Stewart's theorem, see [13].
1.2. Now, let P be in the interior of triangle $A B C$, and denote by p_{a}, p_{b}, p_{c} its distances from the sides. Viviani's theorem says that

$$
\sum p_{a}=p_{a}+p_{b}+p_{c}=h=\frac{l \sqrt{3}}{2} .
$$

Publication Date: July 20, 2005. Communicating Editor: Paul Yiu.
The author thanks the referee for some useful remarks, which have improved the presentation of the paper.

Figure 1

This follows by area considerations, since

$$
S(B P C)+S(C P A)+S(A P B)=S(A B C)
$$

where S denotes area. Thus,

$$
\begin{equation*}
\sum p_{a}=\frac{l \sqrt{3}}{2} \tag{3}
\end{equation*}
$$

1.3. By Gergonne's theorem one has $\sum p_{a}^{2}=$ constant, when P is on the circle of center O. For such related constants, see for example [13]. We shall obtain more general relations, by expressing $\sum p_{a}^{2}$ in terms of l and $d=O P$.

Figure 2
1.4. Another famous theorem, attributed to Pompeiu, states that for any point P in the plane of an equilateral triangle $A B C$, the distances $P A, P B, P C$ can be the sides of a triangle ([9]-[10], [7], [12], [6]). (See also [1], [4], [11], [15], [16], where extensions of this theorem are considered, too.) This triangle is degenerate if P is
on the circle circumscribed to $A B C$, since if for example P is on the interior or $\operatorname{arc} B C$, then by Van Schooten's theorem,

$$
\begin{equation*}
P A=P A+P C . \tag{4}
\end{equation*}
$$

Indeed, by Ptolemy's theorem on $A B P C$ one can write

$$
P A \cdot B C=P C \cdot A B+P B \cdot A C
$$

so that $B C=A B=A C=l$ implies (4). For any other positions of P (i.e., P not on this circle), by Ptolemy's inequality in quadrilaterals one obtains

$$
P A<P B+P C, \quad P B<P A+P C, \text { and } P C<P A+P B,
$$

so that $P A, P B, P C$ are the sides of a triangle. See [13] for many proofs. We shall call a triangle with sides $P A, P B, P C$ a Pompeiu triangle. When P is in the interior, the Pompeiu triangle can be explicitly constructed. Indeed, by rotating the triangle $A B P$ with center A through an angle of 60°, one obtains a triangle $A B^{\prime} C$ which is congruent to $A B P$. Then, since $A P=A B^{\prime}=P B^{\prime}, B P=C B^{\prime}$, the Pompeiu triangle will be $P C B^{\prime}$. Such a rotation will enable us also to compute the area of the Pompeiu triangle.

Figure 3
1.5. There exist many known inequalities for the distances of a point to the vertices of a triangle. For example, for any point P and any triangle $A B C$,

$$
\begin{equation*}
\sum P A \geq 6 r \tag{5}
\end{equation*}
$$

where r is the radius of incircle (due to M. Schreiber (1935), see [7], [13]). Now, in our case $6 r=l \sqrt{3}$, (5) gives

$$
\begin{equation*}
\sum P A \geq l \sqrt{3} \tag{6}
\end{equation*}
$$

for any point P in the plane of equilateral triangle $A B C$. For an independent proof see [12, p.52]. This is based on the following idea: let M_{1} be the midpoint of $B C$. By the triangle inequality one has $A P+P M_{1} \geq A M_{1}$. Now, it is well known that
$P M_{1} \leq \frac{P B+P C}{2}$. From this, we get $l \sqrt{3} \leq 2 P A+P B+P C$, and by writing two similar relations, the relation (6) follows after addition. We note that already (2) implies $\sum P A^{2} \geq l^{2}$, but (6) offers an improvement, since

$$
\begin{equation*}
\sum P A^{2} \geq \frac{1}{3}\left(\sum P A\right)^{2} \geq l^{2} \tag{7}
\end{equation*}
$$

by the classical inequality $x^{2}+y^{2}+z^{2} \geq \frac{1}{3}(x+y+z)^{2}$. As in (7), equality holds in (6) when $P \equiv O$.

2. Identities for p_{a}, p_{b}, p_{c}

Our aim in this section is to deduce certain identities for the distances of an interior point to the sides of an equilateral triangle $A B C$.

Let P be in the interior of triangle $A B C$ (see Figure 1). Let $P M \perp B C$, etc., where $P M=p_{a}$, etc. Let $P M_{1}\left\|A B, P M_{2}\right\| A C$. Then triangle $P M_{1} M_{2}$ is equilateral, giving $\overrightarrow{P M}=\frac{\overrightarrow{P M}_{1}+\overrightarrow{P M}_{2}}{2}$. By writing two similar relations for $\overrightarrow{P Q}$ and $\overrightarrow{P N}$, and using $\overrightarrow{P O}=\frac{\overrightarrow{P A}+\overrightarrow{P B}+\overrightarrow{P C}}{3}$, one easily can deduce the following vectorial identity:

$$
\begin{equation*}
\overrightarrow{P M}+\overrightarrow{P N}+\overrightarrow{P Q}=\frac{3}{2} \overrightarrow{P O} \tag{8}
\end{equation*}
$$

Since $\overrightarrow{P M} \cdot \overrightarrow{P N}=P M \cdot P N \cdot \cos 120^{\circ}=-\frac{1}{2} P M \cdot P N$ (in the cyclic quadrilateral $C N P M$), by putting $P O=d$, one can deduce from (8)

$$
\sum P M^{2}+\frac{1}{2} \sum \overrightarrow{P M} \cdot \overrightarrow{P N}=\frac{9}{4} P O^{2}
$$

so that

$$
\begin{equation*}
\sum p_{a}^{2}-\sum p_{a} p_{b}=\frac{9}{4} d^{2} \tag{9}
\end{equation*}
$$

For similar vectorial arguments, see [12]. On the other hand, from (3), we get

$$
\begin{equation*}
\sum p_{a}^{2}+2 \sum p_{a} p_{b}=\frac{3 l^{2}}{4} . \tag{10}
\end{equation*}
$$

Solving the system (9), (10) one can deduce the following result.

Proposition 1.

$$
\begin{align*}
\sum p_{a}^{2} & =\frac{l^{2}+6 d^{2}}{4}, \tag{11}\\
\sum p_{a} p_{b} & =\frac{l^{2}-3 d^{2}}{4} . \tag{12}
\end{align*}
$$

There are many consequences of (11) and (12). First, $\sum p_{a}^{2}=$ constant if and only if $d=$ constant, i.e., P lying on a circle with center O. This is Gergonne's theorem. Similarly, (12) gives $\sum p_{a} \cdot p_{b}=$ constant if and only if $d=\mathrm{constant}$, i.e., P again lying on a circle with center O. Another consequence of (11) and (12) is

$$
\begin{equation*}
\sum p_{a} p_{b} \leq \frac{l^{2}}{4} \leq \sum p_{a}^{2} \tag{13}
\end{equation*}
$$

An interesting connection between $\sum P A^{2}$ and $\sum p_{a}^{2}$ follows from (2) and (11):

$$
\begin{equation*}
\sum P A^{2}=2 \sum p_{a}^{2}+\frac{l^{2}}{2} \tag{14}
\end{equation*}
$$

3. Inequalities connecting p_{a}, p_{b}, p_{c} with $P A, P B, P C$

This section contains certain new inequalities for $P A, p_{a}$, etc. Among others, relation (18) offers an improvement of known results.

By the arithmetic-geometric mean inequality and (3), one has

$$
p_{a} p_{b} p_{c} \leq\left(\frac{p_{a}+p_{b}+p_{c}}{3}\right)^{3}=\left(\frac{l \sqrt{3}}{6}\right)^{3}=\frac{l^{3} \sqrt{3}}{72}
$$

Thus,

$$
\begin{equation*}
p_{a} p_{b} p_{c} \leq \frac{l^{3} \sqrt{3}}{72} \tag{15}
\end{equation*}
$$

for any interior point P of equilateral triangle $A B C$. This is an equality if and only only if $p_{a}=p_{b}=p_{c}$, i.e., $P \equiv O$.

Now, let us denote $\alpha=\operatorname{mes}(\varangle B P C)$, etc. Writing the area of triangle $B P C$ in two ways, we obtain

$$
B P \cdot C P \cdot \sin \alpha=l \cdot p_{a}
$$

Similarly,

$$
A P \cdot B P \cdot \sin \gamma=l \cdot p_{c}, \quad A P \cdot C P \cdot \sin \beta=l \cdot p_{c}
$$

By multiplying these three relations, we have

$$
\begin{equation*}
P A^{2} \cdot P B^{2} \cdot P C^{2}=\frac{l^{3} p_{a} p_{b} p_{c}}{\sin \alpha \sin \beta \sin \gamma} \tag{16}
\end{equation*}
$$

We now prove the following result.
Theorem 2. For an interior point P of an equilateral triangle $A B C$, one has

$$
\prod P A^{2} \geq \frac{8 l^{3}}{3 \sqrt{3}} \prod p_{a} \quad \text { and } \quad \sum P A \cdot P B \geq l^{2}
$$

Proof. Let $f(x)=\ln \sin x, x \in(0, \pi)$. Since $f^{\prime \prime}(x)=-\frac{1}{\sin ^{2} x}<0, f$ is concave, and

$$
f\left(\frac{\alpha+\beta+\gamma}{3}\right) \geq \frac{f(\alpha)+f(\beta)+f(\gamma)}{3}
$$

giving

$$
\begin{equation*}
\prod \sin \alpha \leq \frac{3 \sqrt{3}}{8} \tag{17}
\end{equation*}
$$

since $\frac{\alpha+\beta+\gamma}{3}=120^{\circ}$ and $\sin 120^{\circ}=\frac{\sqrt{3}}{2}$. Thus, (16) implies

$$
\begin{equation*}
\prod P A^{2} \geq \frac{8 l^{3}}{3 \sqrt{3}} \prod p_{a} \tag{18}
\end{equation*}
$$

We note that $\frac{8 l^{3}}{3 \sqrt{3}} \prod p_{a} \geq 64 \prod p_{a}^{2}$, since this is equivalent to $\prod p_{a} \leq \frac{l^{3} \sqrt{3}}{72}$, i.e. relation (15). Thus (18) improves the inequality

$$
\begin{equation*}
\prod P A \geq 8 \prod p_{a} \tag{19}
\end{equation*}
$$

valid for any triangle (see [2, inequality 12.25], or [12, p.46], where a slightly improvement appears).

On the other hand, since $\frac{\alpha}{2}+\frac{\beta}{2}+\frac{\gamma}{2}=180^{\circ}$, one has

$$
\begin{aligned}
& \cos \alpha+\cos \beta+\cos \gamma+\frac{3}{2} \\
= & 2 \cos \frac{\alpha+\beta}{2} \cos \frac{\alpha-\beta}{2}+2 \cos ^{2} \frac{\gamma}{2}+\frac{1}{2} \\
= & 2\left(\cos ^{2} \frac{\gamma}{2}-\cos \frac{\gamma}{2} \cos \frac{\alpha-\beta}{2}+\frac{1}{4}\right) \\
= & 2\left(\cos ^{2} \frac{\gamma}{2}-\cos \frac{\gamma}{2} \cos \frac{\alpha-\beta}{2}+\frac{1}{4} \cos ^{2} \frac{\alpha-\beta}{2}+\frac{1}{4} \sin ^{2} \frac{\alpha-\beta}{2}\right) \\
= & 2\left[\left(\cos \frac{\gamma}{2}-\frac{1}{2} \cos \frac{\alpha-\beta}{2}\right)^{2}+\frac{1}{4} \sin ^{2} \frac{\alpha-\beta}{2}\right] \geq 0,
\end{aligned}
$$

with equality only for $\alpha=\beta=\gamma=120^{\circ}$. Thus:

$$
\begin{equation*}
\cos \alpha+\cos \beta+\cos \gamma \geq-\frac{3}{2} \tag{20}
\end{equation*}
$$

for any α, β, γ satisfying $\alpha+\beta+\gamma=360^{\circ}$.
Now, in triangle $A P B$ one has, by the law of cosines,

$$
l^{2}=P A^{2}+P B^{2}-2 P A \cdot P B \cdot \cos \gamma,
$$

giving

$$
\cos \gamma=\frac{P A^{2}+P B^{2}-l^{2}}{2 P A \cdot P B} .
$$

By writing two similar relations, one gets, by (20),

$$
\frac{P A^{2}+P C^{2}-l^{2}}{2 P A \cdot P C}+\frac{P B^{2}+P C^{2}-l^{2}}{2 P B \cdot P C}+\frac{P A^{2}+P B^{2}-l^{2}}{2 P A \cdot P B}+\frac{3}{2} \geq 0,
$$

so that

$$
\begin{aligned}
& \left(P A^{2} \cdot P B+P B^{2} \cdot P A+P A \cdot P B \cdot P C\right) \\
+ & \left(P C^{2} \cdot P B+P B^{2} \cdot P C+P A \cdot P B \cdot P C\right) \\
+ & \left(P A^{2} \cdot P C+P C^{2} \cdot P A+P A \cdot P B \cdot P C\right) \\
- & l^{2}(P A+P B+P C) \\
\geq & 0 .
\end{aligned}
$$

This can be rearranged as

$$
(P A+P B+P C)\left(\sum P A \cdot P B-l^{2}\right) \geq 0
$$

and gives the inequality

$$
\begin{equation*}
\sum P A \cdot P B \geq l^{2} \tag{21}
\end{equation*}
$$

with equality when $P \equiv O$.

4. The Pompeiu triangle

In this section, we deduce many relations connecting $P A, P B, P C$, etc by obtaining an identity for the area of Pompeiu triangle. In particular, a new proof of (21) will be given.
4.1. Let P be a point inside the equilateral triangle $A B C$ (see Figure 3). The Pompeiu triangle $P B^{\prime} C$ has the sides $P A, P B, P C$. Let R be the radius of circumcircle of this triangle. It is well known that $\sum P A^{2} \leq 9 R^{2}$ (see [1, p.171], [6, p.52], [9, p.56]). By (2) we get

$$
\begin{align*}
R^{2} & \geq \frac{l^{2}+3 d^{2}}{9} \geq \frac{l^{2}}{9} \tag{22}\\
R & \geq \frac{l}{3} \tag{23}
\end{align*}
$$

with equality only for $d=0$, i.e., $P \equiv O$. Inequality (23) can be proved also by the known relation $s \leq \frac{3 R \sqrt{3}}{2}$, where s is the semi-perimeter of the triangle. Thus we obtain the following inequalities.

Proposition 3.

$$
\begin{equation*}
3 R \sqrt{3} \geq \sum P A \geq l \sqrt{3}, \tag{24}
\end{equation*}
$$

where the last inequality follows by (6).

Figure 4

Now, in order to compute the area of the Pompeiu triangle, let us make two similar rotations as in Figure 3, i.e., a rotation of angle 60° with center C of triangle $A P C$, and another with center B of $B P C$. We shall obtain a hexagon (see Figure 4), $A B^{\prime} C A^{\prime} B C^{\prime}$, where the Pompeiu triangles $P B A^{\prime}, P A C^{\prime}, P C B^{\prime}$ have equal area T. Since $\triangle A P C \equiv \triangle B A^{\prime} C, \triangle A P B \equiv \triangle A B^{\prime} C, \triangle A C^{\prime} B \equiv \triangle B P C$, the area of hexagon $=2 \operatorname{Area}(A B C)$. But $\operatorname{Area}\left(A P B^{\prime}\right)=\frac{A P^{2} \sqrt{3}}{4}, A P B^{\prime}$ being an equilateral triangle. Therefore,

$$
\frac{2 l^{2} \sqrt{3}}{4}=3 T+\frac{P A^{2} \sqrt{3}}{4}+\frac{P B^{2} \sqrt{3}}{4}+\frac{P C^{2} \sqrt{3}}{4},
$$

which by (2) implies

$$
\begin{equation*}
T=\frac{\sqrt{3}}{12}\left(l^{2}-3 d^{2}\right) \tag{25}
\end{equation*}
$$

Theorem 4. The area of the Pompeiu triangle is given by relation (25).

Corollary 5.

$$
\begin{equation*}
T \leq \frac{\sqrt{3}}{12} l^{2} \tag{26}
\end{equation*}
$$

with equality when $d=0$, i.e., when $P \equiv O$.
Now, since in any triangle of area T, and sides $P A, P B, P C$ one has

$$
2 \sum P A \cdot P B-\sum P A^{2} \geq 4 \sqrt{3} \cdot T
$$

(see for example [14], relation (8)), by (2) and (25) one can write

$$
2 \sum P A \cdot P B \geq 3 d^{2}+l^{2}+l^{2}-3 d^{2}=2 l^{2},
$$

giving a new proof of (21).

Corollary 6.

$$
\begin{equation*}
\sum P A^{2} \cdot P B^{2} \geq \frac{1}{3}\left(\sum P A \cdot P B\right)^{2} \geq \frac{l^{4}}{3} \tag{27}
\end{equation*}
$$

4.2. Note that in any triangle, $\sum P A^{2} \cdot P B^{2} \geq \frac{16}{9} S^{2}$, where $S=\operatorname{Area}(A B C)$ (see [13, pp.31-32]). In the case of equilateral triangles, (27) offers an improvement.

Since $r=\frac{T}{s}$, where s is the semi-perimeter and r the radius of inscribed circle to the Pompeiu triangle, by (6) and (26) one can write

$$
r \leq \frac{\left(\frac{\sqrt{3}}{12} l^{2}\right)}{\left(\frac{l \sqrt{3}}{2}\right)}=\frac{l}{6}
$$

Thus, we obtain the following result.
Proposition 7. For the radii r and R of the Pompeiu triangle one has

$$
\begin{equation*}
r \leq \frac{l}{6} \leq \frac{R}{2} \tag{28}
\end{equation*}
$$

The last inequality holds true by (23). This gives an improvement of Euler's inequality $r \leq \frac{R}{2}$ for the Pompeiu triangle. Since $T=\frac{P A \cdot P B \cdot P C}{4 R}$, and $r=\frac{T}{s}$, we get

$$
P A \cdot P B \cdot P C=2 R r(P A+P B+P C),
$$

and the following result.
Proposition 8.

$$
\begin{equation*}
P A \cdot P B \cdot P C \geq \frac{2 l^{2} r \sqrt{3}}{3} \geq 4 r^{2} l \sqrt{3} . \tag{29}
\end{equation*}
$$

The last inequality is the first one of (28). The following result is a counterpart of (29).

Proposition 9.

$$
\begin{equation*}
P A \cdot P B \cdot P C \leq \frac{\sqrt{3} l^{2} R}{3} \tag{30}
\end{equation*}
$$

This follows by $T=\frac{P A \cdot P B \cdot P C}{4 R}$ and (26).
4.3. The sides $P A, P B, P C$ can be expressed also in terms of p_{a}, p_{b}, p_{c}. Since in triangle $P N M$ (see Figure 1), $\varangle N P M=120^{\circ}$, by the Law of cosines one has

$$
M N^{2}=P M^{2}+P N^{2}-2 P M \cdot P N \cdot \cos 120^{\circ} .
$$

On the other hand, in triangle $N M C, N M=P C \cdot \sin C, P C$ being the diameter of circumscribed circle. Since $\sin C=\sin 60^{\circ}=\frac{\sqrt{3}}{2}$, we have $M N=$ $P C \frac{\sqrt{3}}{2}$, and the following result.

Proposition 10.

$$
\begin{equation*}
P C^{2}=\frac{4}{3}\left(p_{b}^{2}+p_{a}^{2}+p_{a} p_{b}\right) . \tag{31}
\end{equation*}
$$

Similarly,

$$
\begin{equation*}
P A^{2}=\frac{4}{3}\left(p_{b}^{2}+p_{c}^{2}+p_{b} p_{c}\right), \quad P B^{2}=\frac{4}{3}\left(p_{c}^{2}+p_{a}^{2}+p_{c} p_{a}\right) . \tag{32}
\end{equation*}
$$

In theory, all elements of Pompeiu's triangle can be expressed in terms of p_{c}, p_{b}, p_{c}. We note that by (11) and (12) relation (2) can be proved again. By the arithmetic-geometric mean inequality, we have

$$
\prod P A^{2} \leq\left(\frac{\sum P A^{2}}{3}\right)^{3}
$$

and the following result.
Theorem 11.

$$
\begin{equation*}
P A \cdot P B \cdot P C \leq\left(\frac{l^{2}+3 d^{2}}{3}\right)^{3 / 2} \tag{33}
\end{equation*}
$$

On the other hand, by the Pólya-Szegö inequality in a triangle (see [8], or [14]) one has

$$
T \leq \frac{\sqrt{3}}{4}(P A \cdot P B \cdot P C)^{2 / 3}
$$

so by (25) one can write (using (12)):

Theorem 12.

$$
\begin{equation*}
P A \cdot P B \cdot P C \geq\left(\frac{l^{2}-3 d^{2}}{3}\right)^{3 / 2}=\left(\frac{4 \sum p_{a} p_{b}}{3}\right)^{3 / 2} . \tag{34}
\end{equation*}
$$

4.4. Other inequalities may be deduced by noting that by (31),

$$
\left(p_{a}+p_{b}\right)^{2} \leq P C^{2} \leq 2\left(p_{a}^{2}+p_{b}^{2}\right)
$$

Since $(\sqrt{x}+\sqrt{y}+\sqrt{z})^{2} \leq 3(x+y+z)$ applied to $x=p_{a}^{2}+p_{b}^{2}$, etc., we get

$$
\sum P A \leq 4 \sqrt{3} \cdot \sqrt{p_{a}^{2}+p_{b}^{2}+p_{c}^{2}}
$$

i.e. by (11) we deduce the following inequality.

Theorem 13.

$$
\begin{equation*}
\sum P A \leq \sqrt{3\left(l^{2}+6 d^{2}\right)} \tag{35}
\end{equation*}
$$

This is related to (6). In fact, (6) and (35) imply that $\sum P A=l \sqrt{3}$ if and only if $d=0$, i.e., $P \equiv O$.

References

[1] N. G. Botea, Un relation entre nombres complexes et la généralization d'un théorème de géometrie élémentaire, Bull. Math. Ph., VIIème Année (1935-1936), Nr. 1,2,3, 13-14.
[2] O. Bottema et al., Geometric Inequalities, Groningen, 1969.
[3] H. S. M. Coxeter, Introduction to Geometry, John Wiley and Sons, 1961 (Hungarian Translation by Müszaki Ed., Budapest, 1973).
[4] M. Dincă, Extensions of Dimitrie Pompeiu's theorem (in Romanian), Gazeta Matematică, 84 (1979) nr. 10, 368-370 and 85 (1980) nr. 5, 198-199.
[5] T. Lalescu, La Géométrie du Triangle, Paris, 1937, 2nd ed., Ed. Jacques Gabay, reprint, Paris, 2003.
[6] N. N. Mihăileanu, Utilization of Complex Numbers in Geometry (Romanian), Ed. Tehnică, Bucureşti, 1968.
[7] D. S. Mitrinović, J. E. Pec̆arić and V. Volenec, Recent Advances in Geometric Inequalities, Kluwer Acad. Publ., 1989.
[8] G. Pólya and G. Szegö, Aufgaben und Lehrsätze aus der Analysis, II, Leipzig, 1925.
[9] D. Pompeiu, Une identité entre nombres complexes et un théorème de géometrie élémentaire, Bull. Math. Phys. Ecole Polyt., Bucharest, 6 (1936) 6-7.
[10] D. Pompeiu, Opera matematică, Ed. Academiei, Bucureşti, 1959.
[11] I. Pop, Regarding Dimitrie Pompeiu's theorem on the equilateral triangle (in Romanian), Gazeta Matematică, vol. XC, 3/1985, 70-73.
[12] J. Sándor, Geometric Inequalities (Hungarian), Ed. Dacia, Cluj, 1988.
[13] J. Sándor, Geometric theorems, diophantine equations, and arithmetic functions, American Research Press, Rehoboth, New Mexico, 2002.
[14] J. Sándor, On the cotangent inequality of a triangle, Octogon Math. Mag., 12 (2004) no. 2, 738-740.
[15] J.-P. Sydler, Généralization d'un théorème de M. Pompeiu, Elem. Math., 8 (1953) 136-138.
[16] V. Thébault, Sur un théorème de M. D. Pompeiu, Bull. Math. Phys. École Polytechn. Bucarest, 10 (1938-1939) 38-42.

József Sándor: Babeş-Bolyai University of Cluj, Romania
E-mail address: jsandor@math.ubbcluj.ro, jjsandor@hotmail.com

