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Abstract. By studying the distances of a point to the sides, respectively the
vertices of an equilateral triangle, certain new identities and inequalities are de-
duced. Some inequalities for the elements of the Pompeiu triangle are also es-
tablished.

1. Introduction

The equilateral (or regular) triangle has some special properties, generally not
valid in an arbitrary triangle. Such surprising properties have been studied by many
famous mathematicians, including Viviani, Gergonne, Leibnitz, Van Schooten,
Toricelli, Pompeiu, Goormaghtigh, Morley, etc. ([2], [3], [4], [7]). Our aim in
this paper is the study of certain identities and inequalities involving the distances
of a point to the sides or the vertices of an equilateral triangle. For the sake of
completeness, we shall recall some well-known results.

1.1. Let ABC be an equilateral triangle of side lengthAB = BC = CA = l,
and heighth. Let P be any point in the plane of the triangle. IfO is the center of
the triangle, then the Leibnitz relation (valid in fact for any triangle) implies that

∑
PA2 = 3PO2 +

∑
OA2. (1)

Let PO = d in what follows. Since in our caseOA = OB = OC = R =
l
√

3
3

,

we have
∑

OA2 = l2, and (1) gives∑
PA2 = 3d2 + l2. (2)

Therefore,
∑

PA2 = constant if and only ifd = constant,i.e., whenP is on a
circle with centerO. For a proof by L. Moser via analytical geometry, see [12].
For a proof using Stewart’s theorem, see [13].

1.2. Now, let P be in the interior of triangleABC, and denote bypa, pb, pc its
distances from the sides. Viviani’s theorem says that∑

pa = pa + pb + pc = h =
l
√

3
2

.
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This follows by area considerations, since

S(BPC) + S(CPA) + S(APB) = S(ABC),

whereS denotes area. Thus,

∑
pa =

l
√

3
2

. (3)

1.3. By Gergonne’s theorem one has
∑

p2
a = constant, whenP is on the circle

of centerO. For such related constants, see for example [13]. We shall obtain more
general relations, by expressing

∑
p2

a in terms ofl andd = OP .
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1.4. Another famous theorem, attributed to Pompeiu, states that for any pointP
in the plane of an equilateral triangleABC, the distancesPA, PB, PC can be the
sides of a triangle ([9]-[10], [7], [12], [6]). (See also [1], [4], [11], [15], [16], where
extensions of this theorem are considered, too.) This triangle is degenerate ifP is
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on the circle circumscribed toABC, since if for exampleP is on the interior or
arcBC, then by Van Schooten’s theorem,

PA = PA + PC. (4)

Indeed, by Ptolemy’s theorem onABPC one can write

PA · BC = PC · AB + PB · AC,

so thatBC = AB = AC = l implies (4). For any other positions ofP (i.e., P not
on this circle), by Ptolemy’s inequality in quadrilaterals one obtains

PA < PB + PC, PB < PA + PC, andPC < PA + PB,

so thatPA, PB, PC are the sides of a triangle. See [13] for many proofs. We
shall call a triangle with sidesPA, PB, PC a Pompeiu triangle. WhenP is in
the interior, the Pompeiu triangle can be explicitly constructed. Indeed, by rotating
the triangleABP with centerA through an angle of60◦, one obtains a triangle
AB′C which is congruent toABP . Then, sinceAP = AB′ = PB′, BP = CB′,
the Pompeiu triangle will bePCB′. Such a rotation will enable us also to compute
the area of the Pompeiu triangle.
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Figure 3

1.5. There exist many known inequalities for the distances of a point to the ver-
tices of a triangle. For example, for any pointP and any triangleABC,∑

PA ≥ 6r, (5)

wherer is the radius of incircle (due to M. Schreiber (1935), see [7], [13]). Now,
in our case6r = l

√
3, (5) gives ∑

PA ≥ l
√

3 (6)

for any pointP in the plane of equilateral triangleABC. For an independent proof
see [12, p.52]. This is based on the following idea: letM1 be the midpoint ofBC.
By the triangle inequality one hasAP +PM1 ≥ AM1. Now, it is well known that
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PM1 ≤ PB + PC

2
. From this, we getl

√
3 ≤ 2PA + PB + PC, and by writing

two similar relations, the relation (6) follows after addition. We note that already
(2) implies

∑
PA2 ≥ l2, but (6) offers an improvement, since

∑
PA2 ≥ 1

3

(∑
PA
)2

≥ l2 (7)

by the classical inequalityx2 + y2 + z2 ≥ 1
3
(x+ y + z)2. As in (7), equality holds

in (6) whenP ≡ O.

2. Identities for pa, pb, pc

Our aim in this section is to deduce certain identities for the distances of an
interior point to the sides of an equilateral triangleABC.

Let P be in the interior of triangleABC (see Figure 1). LetPM ⊥ BC,
etc., wherePM = pa, etc. LetPM1‖AB, PM2‖AC. Then trianglePM1M2 is

equilateral, giving
−−→
PM =

−−→
PM1 +

−−→
PM2

2
. By writing two similar relations for

−−→
PQ

and
−−→
PN , and using

−−→
PO =

−→
PA +

−−→
PB +

−−→
PC

3
, one easily can deduce the following

vectorial identity:
−−→
PM +

−−→
PN +

−−→
PQ =

3
2
−−→
PO. (8)

Since
−−→
PM · −−→PN = PM ·PN · cos 120◦ = −1

2
PM ·PN (in the cyclic quadri-

lateralCNPM ), by puttingPO = d, one can deduce from (8)∑
PM2 +

1
2

∑−−→
PM · −−→PN =

9
4
PO2,

so that

∑
p2

a −
∑

papb =
9
4
d2. (9)

For similar vectorial arguments, see [12]. On the other hand, from (3), we get

∑
p2

a + 2
∑

papb =
3l2

4
. (10)

Solving the system (9), (10) one can deduce the following result.

Proposition 1.

∑
p2

a =
l2 + 6d2

4
, (11)

∑
papb =

l2 − 3d2

4
. (12)
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There are many consequences of (11) and (12). First,
∑

p2
a = constant if and

only if d = constant,i.e., P lying on a circle with centerO. This is Gergonne’s
theorem. Similarly, (12) gives

∑
pa · pb = constant if and only ifd = constant,

i.e., P again lying on a circle with centerO. Another consequence of (11) and (12)
is

∑
papb ≤ l2

4
≤
∑

p2
a. (13)

An interesting connection between
∑

PA2 and
∑

p2
a follows from (2) and

(11): ∑
PA2 = 2

∑
p2

a +
l2

2
. (14)

3. Inequalities connecting pa, pb, pc with PA, PB, PC

This section contains certain new inequalities forPA, pa, etc. Among others,
relation (18) offers an improvement of known results.

By the arithmetic-geometric mean inequality and (3), one has

papbpc ≤
(

pa + pb + pc

3

)3

=

(
l
√

3
6

)3

=
l3
√

3
72

.

Thus,

papbpc ≤ l3
√

3
72

(15)

for any interior pointP of equilateral triangleABC. This is an equality if and only
only if pa = pb = pc, i.e., P ≡ O.

Now, let us denoteα = mes(�BPC), etc. Writing the area of triangleBPC
in two ways, we obtain

BP · CP · sin α = l · pa.

Similarly,

AP · BP · sin γ = l · pc, AP · CP · sin β = l · pc.

By multiplying these three relations, we have

PA2 · PB2 · PC2 =
l3papbpc

sin α sinβ sin γ
. (16)

We now prove the following result.

Theorem 2. For an interior point P of an equilateral triangle ABC , one has

∏
PA2 ≥ 8l3

3
√

3

∏
pa and

∑
PA · PB ≥ l2.
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Proof. Let f(x) = ln sin x, x ∈ (0, π). Sincef ′′(x) = − 1
sin2 x

< 0, f is concave,

and

f

(
α + β + γ

3

)
≥ f(α) + f(β) + f(γ)

3
,

giving ∏
sin α ≤ 3

√
3

8
, (17)

since
α + β + γ

3
= 120◦ andsin 120◦ =

√
3

2
. Thus, (16) implies

∏
PA2 ≥ 8l3

3
√

3

∏
pa. (18)

We note that
8l3

3
√

3

∏
pa ≥ 64

∏
p2

a, since this is equivalent to
∏

pa ≤ l3
√

3
72

,

i.e. relation (15). Thus (18) improves the inequality∏
PA ≥ 8

∏
pa (19)

valid for any triangle (see [2, inequality 12.25], or [12, p.46], where a slightly
improvement appears).

On the other hand, since
α

2
+

β

2
+

γ

2
= 180◦, one has

cos α + cos β + cos γ +
3
2

=2 cos
α + β

2
cos

α − β

2
+ 2 cos2 γ

2
+

1
2

=2
(

cos2 γ

2
− cos

γ

2
cos

α − β

2
+

1
4

)

=2
(

cos2 γ

2
− cos

γ

2
cos

α − β

2
+

1
4

cos2
α − β

2
+

1
4

sin2 α − β

2

)

=2

[(
cos

γ

2
− 1

2
cos

α − β

2

)2

+
1
4

sin2 α − β

2

]
≥ 0,

with equality only forα = β = γ = 120◦. Thus:

cos α + cos β + cos γ ≥ −3
2

(20)

for anyα, β, γ satisfyingα + β + γ = 360◦.
Now, in triangleAPB one has, by the law of cosines,

l2 = PA2 + PB2 − 2PA · PB · cos γ,

giving

cos γ =
PA2 + PB2 − l2

2PA · PB
.
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By writing two similar relations, one gets, by (20),

PA2 + PC2 − l2

2PA · PC
+

PB2 + PC2 − l2

2PB · PC
+

PA2 + PB2 − l2

2PA · PB
+

3
2
≥ 0,

so that

(PA2 · PB + PB2 · PA + PA · PB · PC)

+ (PC2 · PB + PB2 · PC + PA · PB · PC)

+ (PA2 · PC + PC2 · PA + PA · PB · PC)

− l2(PA + PB + PC)
≥ 0.

This can be rearranged as

(PA + PB + PC)
(∑

PA · PB − l2
)
≥ 0,

and gives the inequality ∑
PA · PB ≥ l2, (21)

with equality whenP ≡ O. �

4. The Pompeiu triangle

In this section, we deduce many relations connectingPA, PB, PC, etc by
obtaining an identity for the area of Pompeiu triangle. In particular, a new proof of
(21) will be given.

4.1. Let P be a point inside the equilateral triangleABC (see Figure 3). The
Pompeiu trianglePB′C has the sidesPA, PB, PC. Let R be the radius of cir-
cumcircle of this triangle. It is well known that

∑
PA2 ≤ 9R2 (see [1, p.171],

[6, p.52], [9, p.56]). By (2) we get

R2 ≥ l2 + 3d2

9
≥ l2

9
, (22)

R ≥ l

3
, (23)

with equality only ford = 0, i.e., P ≡ O. Inequality (23) can be proved also by

the known relations ≤ 3R
√

3
2

, wheres is the semi-perimeter of the triangle. Thus

we obtain the following inequalities.

Proposition 3.

3R
√

3 ≥
∑

PA ≥ l
√

3, (24)

where the last inequality follows by (6).
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Now, in order to compute the area of the Pompeiu triangle, let us make two
similar rotations as in Figure 3,i.e., a rotation of angle60◦ with centerC of triangle
APC, and another with centerB of BPC. We shall obtain a hexagon (see Figure
4), AB′CA′BC ′, where the Pompeiu trianglesPBA′, PAC ′, PCB′ have equal
areaT . Since�APC ≡ �BA′C, �APB ≡ �AB′C, �AC ′B ≡ �BPC, the

area of hexagon= 2Area(ABC). But Area(APB′) =
AP 2

√
3

4
, APB′ being an

equilateral triangle. Therefore,

2l2
√

3
4

= 3T +
PA2

√
3

4
+

PB2
√

3
4

+
PC2

√
3

4
,

which by (2) implies

T =
√

3
12

(l2 − 3d2). (25)

Theorem 4. The area of the Pompeiu triangle is given by relation (25).

Corollary 5.

T ≤
√

3
12

l2, (26)

with equality when d = 0, i.e., when P ≡ O.

Now, since in any triangle of areaT , and sidesPA, PB, PC one has

2
∑

PA · PB −
∑

PA2 ≥ 4
√

3 · T
(see for example [14], relation (8)), by (2) and (25) one can write

2
∑

PA · PB ≥ 3d2 + l2 + l2 − 3d2 = 2l2,

giving a new proof of (21).
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Corollary 6. ∑
PA2 · PB2 ≥ 1

3

(∑
PA · PB

)2 ≥ l4

3
. (27)

4.2. Note that in any triangle,
∑

PA2 ·PB2 ≥ 16
9

S2, whereS = Area(ABC)
(see [13, pp.31-32]). In the case of equilateral triangles, (27) offers an improve-
ment.

Sincer =
T

s
, wheres is the semi-perimeter andr the radius of inscribed circle

to the Pompeiu triangle, by (6) and (26) one can write

r ≤
(√

3
12 l2

)
(

l
√

3
2

) =
l

6
.

Thus, we obtain the following result.

Proposition 7. For the radii r and R of the Pompeiu triangle one has

r ≤ l

6
≤ R

2
. (28)

The last inequality holds true by (23). This gives an improvement of Euler’s

inequality r ≤ R

2
for the Pompeiu triangle. SinceT =

PA · PB · PC

4R
, and

r =
T

s
, we get

PA · PB · PC = 2Rr(PA + PB + PC),

and the following result.

Proposition 8.

PA · PB · PC ≥ 2l2r
√

3
3

≥ 4r2l
√

3. (29)

The last inequality is the first one of (28). The following result is a counterpart
of (29).

Proposition 9.

PA · PB · PC ≤
√

3l2R
3

. (30)

This follows byT =
PA · PB · PC

4R
and (26).

4.3. The sidesPA,PB,PC can be expressed also in terms ofpa, pb, pc. Since
in trianglePNM (see Figure 1),�NPM = 120◦, by the Law of cosines one has

MN2 = PM2 + PN2 − 2PM · PN · cos 120◦.

On the other hand, in triangleNMC, NM = PC · sin C, PC being the di-

ameter of circumscribed circle. Sincesin C = sin 60◦ =
√

3
2

, we haveMN =

PC

√
3

2
, and the following result.
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Proposition 10.

PC2 =
4
3
(p2

b + p2
a + papb). (31)

Similarly,

PA2 =
4
3
(p2

b + p2
c + pbpc), PB2 =

4
3
(p2

c + p2
a + pcpa). (32)

In theory, all elements of Pompeiu’s triangle can be expressed in terms ofpa,
pb, pc. We note that by (11) and (12) relation (2) can be proved again. By the
arithmetic-geometric mean inequality, we have

∏
PA2 ≤



∑

PA2

3




3

,

and the following result.

Theorem 11.

PA · PB · PC ≤
(

l2 + 3d2

3

)3/2

. (33)

On the other hand, by the P´olya-Szeg¨o inequality in a triangle (see [8], or [14])
one has

T ≤
√

3
4

(PA · PB · PC)2/3,

so by (25) one can write (using (12)):

Theorem 12.

PA · PB · PC ≥
(

l2 − 3d2

3

)3/2

=


4

∑
papb

3




3/2

. (34)

4.4. Other inequalities may be deduced by noting that by (31),

(pa + pb)2 ≤ PC2 ≤ 2(p2
a + p2

b).

Since(
√

x +
√

y +
√

z)2 ≤ 3(x + y + z) applied tox = p2
a + p2

b , etc., we get∑
PA ≤ 4

√
3 ·
√

p2
a + p2

b + p2
c ,

i.e. by (11) we deduce the following inequality.

Theorem 13. ∑
PA ≤

√
3(l2 + 6d2). (35)

This is related to (6). In fact, (6) and (35) imply that
∑

PA = l
√

3 if and only
if d = 0, i.e., P ≡ O.
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