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Abstract. By studying the distances of a point to the sides, respectively the
vertices of an equilateral triangle, certain new identities and inequalities are de-
duced. Some inequalities for the elements of the Pompeiu triangle are also es-
tablished.

1. Introduction

The equilateral (or regular) triangle has some special properties, generally not
valid in an arbitrary triangle. Such surprising properties have been studied by many
famous mathematicians, including Viviani, Gergonne, Leibnitz, Van Schooten,
Toricelli, Pompeiu, Goormaghtigh, Morley, etc. ([2], [3], [4], [7]). Our aim in
this paper is the study of certain identities and inequalities involving the distances
of a point to the sides or the vertices of an equilateral triangle. For the sake of
completeness, we shall recall some well-known results.

1.1 Let ABC be an equilateral triangle of side lengtB = BC = CA = |,
and heighth. Let P be any point in the plane of the triangle.¥is the center of
the triangle, then the Leibnitz relation (valid in fact for any triangle) implies that

> PA?=3P0%+) 0A% (1)

Let PO = din what follows. Since inourca®eA = OB =0C =R = ?
we haved ~0A? = I?, and (1) gives

> PA*=3d+ 17 2)

Therefore,z PA? = constant if and only ifl = constantj.e., whenP is on a

circle with centerO. For a proof by L. Moser via analytical geometry, see [12].
For a proof using Stewart’s theorem, see [13].

1.2 Now, let P be in the interior of triangleA BC', and denote by, py, p. its
distances from the sides. Viviani’s theorem says that

3
Zpa:pa+pb+pc:h: T
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Figure 1

This follows by area considerations, since
S(BPC)+ S(CPA)+ S(APB) = S(ABC),
whereS denotes area. Thus,

D Pa= ? 3)

1.3 By Gergonne’s theorem one hgs: p2 = constant, wherP is on the circle
of centerO. For such related constants, see for example [13]. We shall obtain more
general relations, by expressiE p2 in terms ofl andd = OP.
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Figure 2

1.4. Another famous theorem, attributed to Pompeiu, states that for any point
in the plane of an equilateral triangleBC, the distance$ A, PB, PC' can be the
sides of a triangle ([9]-[10], [7], [12], [6]). (See also [1], [4], [11], [15], [16], where
extensions of this theorem are considered, too.) This triangle is degenebai® if
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on the circle circumscribed td BC, since if for exampleP is on the interior or
arc BC, then by Van Schooten’s theorem,

PA=PA+ PC. 4)
Indeed, by Ptolemy’s theorem ohB PC one can write
PA-BC=PC-AB+ PB - AC,

sothatBC = AB = AC = [ implies (4). For any other positions &f (i.e., P not
on this circle), by Ptolemy’s inequality in quadrilaterals one obtains

PA < PB+PC, PB< PA+ PC,andPC < PA+ PB,

so thatPA, PB, PC are the sides of a triangle. See [13] for many proofs. We
shall call a triangle with side® A, PB, PC aPompeiu triangle. WhenP is in

the interior, the Pompeiu triangle can be explicitly constructed. Indeed, by rotating
the triangle AB P with centerA through an angle o6(°, one obtains a triangle
AB'C which is congruent tel BP. Then, sinceAP = AB' = PB', BP = CB/,

the Pompeiu triangle will b&C B'. Such a rotation will enable us also to compute
the area of the Pompeiu triangle.

60°
B/

Figure 3

1.5, There exist many known inequalities for the distances of a point to the ver-
tices of a triangle. For example, for any poiitand any triangleA BC,

> PA>6r, (5)
wherer is the radius of incircle (due to M. Schreiber (1935), see [7], [13]). Now,
in our casebr = 11/3, (5) gives

> PA>1V3 (6)

for any pointP in the plane of equilateral triangléBC'. For an independent proof
see [12, p.52]. This is based on the following idea:Mgtbe the midpoint oBC.
By the triangle inequality one hasP + PM; > AM;. Now, itis well known that
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PB+P . i
PM, < LC From this, we gety/3 < 2PA + PB + PC, and by writing

two similar relations, the relation (6) follows after addition. We note that already
(2) impliesz PA? > 2, but (6) offers an improvement, since

Y pA’> % (Z PA)2 > |2 7)

L . 1 . .
by the classical inequality? + 2 + 22 > §<x +y+2)% Asin (7), equality holds
in (6) whenP = O.

2. ldentitiesfor pq, pp, pe

Our aim in this section is to deduce certain identities for the distances of an
interior point to the sides of an equilateral triangl&C'.

Let P be in the interior of triangleABC (see Figure 1). LePM | BC,
etc., wherePM = p,, etc. LetPM1||AB PM;||AC. Then triangleP M; M, is

. PM,+PM
equilateral, givingPM = # By writing two similar relations foPQ
PA +2P_é +PC
— —
andPN, and usingPO = 3 , one easily can deduce the following
vectorial identity:
_ = — 33—
PM + PN + PQ = §PO. (8)

L= = 1 , . :
SincePM - PN = PM - PN - cos 120° = —§PM - PN (in the cyclic quadri-
lateral C N P M), by putting PO = d, one can deduce from (8)
9

1 _— —
PM?+ =Y PM- PN = -P0O?
D PMP4oy PO,
so that

> 2= papy = —d2 ©)

For similar vectorial arguments, see [12]. On the other hand, from (3), we get

3l2
Y opi A2 papy= (10)
Solving the system (9), (10) one can deduce the following result.

Proposition 1.

2 2
Sy I +6d, 1)

— 3d2
> papy = (12)
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There are many consequences of (11) and (12). Empi = constant if and
only if d = constantj.e.,, P lying on a circle with cente). This is Gergonne’s
theorem. Similarly, (12) givegpa - pp = constant if and only it/ = constant,

i.e., P again lying on a circle with cent&p. Another consequence of (11) and (12)
is

2
> paps < ZZ <> p (13)

An interesting connection betweén_ PA” and > p, follows from (2) and
(12):

l2
ZPA2:2Zp§+§. (14)

3. Inequalities connecting p,, ps, p. With PA, PB, PC

This section contains certain new inequalities fod, p,, etc. Among others,
relation (18) offers an improvement of known results.
By the arithmetic-geometric mean inequality and (3), one has

3
_(patpetpc) (W3 _BVB
PaPbPec > 3 = 6 B
Thus,
133
PaPpPe < Ty (15)

for any interior pointP of equilateral triangled BC'. This is an equality if and only
only if p, = pp = pe, i€, P = 0.

Now, let us denotex = mes(<<BPC), etc. Writing the area of triangl8 PC
in two ways, we obtain

BP-CP -sina=1:p,.
Similarly,
AP -BP - -siny=1-p., AP-CP-sinff=1-p..

By multiplying these three relations, we have

l3 a C
PA?. pB?. pC? = PaPtPe (16)

sin v sin Bsiny
We now prove the following result.

Theorem 2. For aninterior point P of an equilateral triangle ABC, one has

[[ra®= 38—\l/3§Hpa and Y PA-PB>1"
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Proof. Let f(z) = lnsinz, z € (0, 7). Sincef”(z) = —— 12 < 0, f is concave,
S~ T
and
F(OFBEYY S S+ ) +50)
3 - 3 ’
giving
Hsina < 3—\8/§, @an
since%ﬁﬂ = 120° andsin 120° = ? Thus, (16) implies

813
[[Pa*> 33 []7. (18)

813 V3
We note that— . > 64 2 since this is equivalent . < ——,\
3 3I_Ip > 6 Hpa [ is is equiv i po < =

i.e. relation (15). Thus (18) improves the inequality

HPA > SHpa (19)

valid for any triangle (see [2, inequality 12.25], or [12, p.46], where a slightly
improvement appears).

On the other hand, sinc%+§+%:180°,one has
3
cosa+cosﬁ+cosy+§
— 1
ZQCOSa;ﬁCOSa2ﬁ+2COS2%+§
— 1
:2(0032%—c0s%cosa2ﬁ+1>
— 1 — 1 _
:2<0082%—c0s%cosa2ﬁ+10032a2ﬂ+15m2a2_ﬁ>
1 —8\%? 1 _
=2 cosz——cosa B +—sin2—a B >0,
2 2 2 4 2

with equality only fora = 3 =« = 120°. Thus:
3
cosa—i—cosﬁ—i—cos*yZ—E (20)

for anya, 3, v satisfyinga + 5 + v = 360°.
Now, in triangle AP B one has, by the law of cosines,

I?=PA%> + PB> —2PA - PB - cos 7,
giving
PA? 4 PB? - [?
2PA-PB

cosy =
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By writing two similar relations, one gets, by (20),
PA% 4 PC? - 2 N PB? + PC? — I? N PA%? 4 PB? - [? L3
2PA - PC 2PB - PC 2PA-PB 2
so that

>0

9

(PA? . PB+ PB?.- PA+ PA-PB- PC)
PC?.PB+ PB?-PC+ PA-PB- PO)
PA%*.PC + PC?*.-PA+PA-PB-PC)
(PA+ PB + PC)

+
+

2
0.

AV

This can be rearranged as
(PA+ PB + PC) (ZPA-PB - F) >0,
and gives the inequality
Y PA-PB>P, (21)
with equality whenP = O. g

4, The Pompeiu triangle

In this section, we deduce many relations connectitv, PB, PC, etc by
obtaining an identity for the area of Pompeiu triangle. In particular, a new proof of
(21) will be given.

4.1 Let P be a point inside the equilateral triangleBC (see Figure 3). The
Pompeiu triangleP B'C' has the side* A, PB, PC. Let R be the radius of cir-

cumcircle of this triangle. It is well known thdt_ PA” < 9R? (see [1, p.171],
[6, p.52], [9, p.56]). By (2) we get

2 2

. +93d

: (23)

l2
> — 22
=" (22)

R >

W ~

with equality only ford = 0, i.e., P = O. Inequality (23) can be proved also by

. 3RV3 . o .
the known relatiors < \/_, wheres is the semi-perimeter of the triangle. Thus
we obtain the following inequalities.

Proposition 3.
3RV3>> PA>1V3, (24)
where the last inequality follows by (6).
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Figure 4

Now, in order to compute the area of the Pompeiu triangle, let us make two
similar rotations as in Figure 8g., a rotation of anglé(® with centerC' of triangle
APC, and another with centd of BPC'. We shall obtain a hexagon (see Figure
4), AB'CA’BC’, where the Pompeiu triangld3BA’, PAC’, PC B’ have equal
areal'. SinceAAPC = ABA'C, NAPB = NAB'C, NAC'B = ABPC, the

AP%/3

area of hexagon- 2Area(ABC'). But Area(APB') = T APB' being an
equilateral triangle. Therefore,
202\/3 PA%/3 PB*/3 PC?*/3
V3 =3T+ V3 + V3 + \/_,

4 4 4 4
which by (2) implies

T = ﬁ(ﬂ — 3d?). (25)
12
Theorem 4. The area of the Pompeiu triangle is given by relation (25).

Corollary 5.

T < gﬁ, (26)

with equality when d = 0, i.e,, when P = O.
Now, since in any triangle of aréf, and sides? A, PB, PC one has
2) PA-PB-) PA*>4V3.T
(see for example [14], relation (8)), by (2) and (25) one can write
23 PA-PB>3d*+1°+1° - 3d* = 21,

giving a new proof of (21).
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Corollary 6.
l4

}:PAWPB22§(§:PAJnﬁ2z§n 27)

. . 1
4.2 Note that in any triangle) _ PA*- PB* > —682, whereS = Area(ABC)

(see [13, pp.31-32)]). In the case of equilateral triangles, (27) offers an improve-
ment.

Sincer = z wheres is the semi-perimeter andthe radius of inscribed circle
S
to the Pompeiu triangle, by (6) and (26) one can write
(#7)

< =—.
T‘(M% 6
2
Thus, we obtain the following result.

Proposition 7. For theradii » and R of the Pompeiu triangle one has
I R
< - < = 28
"=6=72 (28)
The last inequality holds true by (23). This gives an improvement of Euler’s
. . R S . PA-PB-PC
inequality r < By for the Pompeiu triangle. Sinc€ = — R and
T
r= we get

PA-PB-PC =2Rr(PA+ PB+ PC),
and the following result.
Proposition 8.

202r/3
3

PA-PB-PC > > 4r21V/3. (29)

The last inequality is the first one of (28). The following result is a counterpart
of (29).

Proposition 9.
V3I’R
T

and (26).

PA-PB-PC<

PA-PB-PC
4R
4.3 The sidesPA, PB, PC can be expressed also in termsppfpy, p.. Since
in triangle PN M (see Figure 1)gxNPM = 120°, by the Law of cosines one has
MN? = PM? + PN? —2PM - PN - cos 120°.

On the other hand, in triangl® M C, NM = PC - sinC, PC being the di-
V3

ameter of circumscribed circle. SineaC = sin6(0° = > we haveM N =

V3

PCT’ and the following result.

(30)

This follows byT =
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Proposition 10.

4
PC? = S (b} + P} + paps)- (31)
Smilarly,
4 4
PA? = (9} + i +pope),  PB® = (0% + 1} + pepa). (32)

In theory, all elements of Pompeiu’s triangle can be expressed in terms of
Dy, Pe. We note that by (11) and (12) relation (2) can be proved again. By the
arithmetic-geometric mean inequality, we have

HPA2§ (Z;DAQ)?,’

and the following result.

Theorem 11.

2 2\ 3/2
l +3d> ‘ (33)

PA-PB-PC< (
On the other hand, by theoBa-Szeg@ inequality in a triangle (see [8], or [14])

one has
T < ?(PA . PB - PC)*?,

so by (25) one can write (using (12)):
Theorem 12.

3/2
232\ (4> paps
PA-PB-PC > ; == - (34)

4.4. Other inequalities may be deduced by noting that by (31),
(Pa +p1)? < PC? < 2(p2 + p}).
Since(\/z + \/y + v/2z)? < 3(z + y + z) applied tox = p? + p}, etc., we get

> PA<4AVE-\[p2+ 0+ 12,

i.e. by (11) we deduce the following inequality.

Theorem 13.

D PA< /B2 +6d2). (35)

This is related to (6). In fact, (6) and (35) imply tiet PA = I/3 if and only
ifd=0,ie,P=0.
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