A Simple Barycentric Coordinates Formula

Nikolaos Dergiades

Abstract

We establish a simple formula for the barycentric coordinates with respect to a given triangle $A B C$ of a point P specified by the oriented angles $B P C, C P A$ and $A P B$. Several applications are given.

We establish a simple formula for the homogeneous barycentric coordinates of a point with respect to a given triangle.

Theorem 1. With reference to a given a triangle $A B C$, a point P specified by the oriented angles

$$
x=\measuredangle B P C, \quad y=\measuredangle C P A, \quad z=\measuredangle A P B,
$$

has homogeneous barycentric coordinates

$$
\begin{equation*}
\left(\frac{1}{\cot A-\cot x}: \frac{1}{\cot B-\cot y}: \frac{1}{\cot C-\cot z}\right) . \tag{1}
\end{equation*}
$$

Figure 1.

Proof. Construct the circle through B, P, C, and let it intersect the line $A P$ at A^{\prime} (see Figure 2). Clearly, $\angle A^{\prime} B C=\angle A^{\prime} P C=\pi-\angle C P A=\pi-y$ and similarly, $\angle A^{\prime} C B=\pi-z$. It follows from Conway's formula [5, $\S 3.4 .2$] that in barycentric coordinates

$$
A^{\prime}=\left(-a^{2}: S_{C}+S_{\pi-z}: S_{B}+S_{\pi-y}\right)=\left(-a^{2}: S_{C}-S_{z}: S_{B}-S_{y}\right) .
$$

Similarly, the lines $B P$ intersects the circle $C P A$ at a point B^{\prime}, and $C P$ intersects the circle $A P B$ at C^{\prime} whose coordinates can be easily written down. These be reorganized as

Figure 2.

$$
\begin{aligned}
A^{\prime} & =\left(-\frac{a^{2}}{\left(S_{B}-S_{y}\right)\left(S_{C}-S_{z}\right)}: \frac{1}{S_{B}-S_{y}}: \frac{1}{S_{C}-S_{z}}\right), \\
B^{\prime} & =\left(\frac{1}{S_{A}-S_{x}}:-\frac{b^{2}}{\left(S_{C}-S_{z}\right)\left(S_{A}-S_{x}\right)}: \frac{1}{S_{C}-S_{z}}\right), \\
C^{\prime} & =\left(\frac{1}{S_{A}-S_{x}}: \frac{1}{S_{B}-S_{y}}:-\frac{c^{2}}{\left(S_{A}-S_{x}\right)\left(S_{B}-S_{y}\right)}\right) .
\end{aligned}
$$

According the version of Ceva's theorem given in [5, §3.2.1], the lines $A A^{\prime}, B B^{\prime}$, $C C^{\prime}$ intersect at a point, which is clearly P, whose coordinates are

$$
\left(\frac{1}{S_{A}-S_{x}}: \frac{1}{S_{B}-S_{y}}: \frac{1}{S_{C}-S_{z}}\right) .
$$

Since by definition $S_{\theta}=S \cdot \cot \theta$, this formula is clearly equivalent to (1).
Remark. This note is a revision of [1]. Antreas Hatzipolakis has subsequently given a traditional trigonometric proof [3].

The usefulness of formula (1) is that it is invariant when we substitute x, y, z by directed angles.
Corollary 2 (Schaal). If for three points $A^{\prime}, B^{\prime}, C^{\prime}$ the directed angles $x=$ $\left(A^{\prime} B, A^{\prime} C\right), y=\left(B^{\prime} C, B^{\prime} A\right)$ and $z=\left(C^{\prime} A, C^{\prime} B\right)$ satisfy $x+y+z \equiv 0 \bmod \pi$, then the circumcircles of triangles $A^{\prime} B C, B^{\prime} C A, C^{\prime} A B$ are concurrent at P.

Proof. Referring to Figure 2, if the circumcircles of triangles $A^{\prime} B C$ and $B^{\prime} C A$ intersect at P, then from concyclicity,

$$
\begin{aligned}
& (P B, P C)=\left(A^{\prime} B, A^{\prime} C\right)=x, \\
& (P C, P A)=\left(B^{\prime} C, B^{\prime} A\right)=y
\end{aligned}
$$

It follows that
$(P A, P B)=(P A, P C)+(P C, P B)=-y-x \equiv z=\left(C^{\prime} A, C^{\prime} B\right) \bmod \pi$, and C^{\prime}, A, B, P are concyclic. Now, it is obvious that the barycentrics of P are given by (1).

For example, if the triangles $A^{\prime} B C, B^{\prime} C A, C^{\prime} A B$ are equilateral on the exterior of triangle $A B C$, then $x=y=z=-\frac{\pi}{3}$, and $x+y+z \equiv 0 \bmod \pi$. By Corollary 2 , we conclude that the circumcircles of these triangles are concurrent at

$$
\begin{aligned}
P & =\left(\frac{1}{\cot A-\cot \left(-\frac{\pi}{3}\right)}: \frac{1}{\cot B-\cot \left(-\frac{\pi}{3}\right)}: \frac{1}{\cot C-\cot \left(-\frac{\pi}{3}\right)}\right) \\
& =\left(\frac{1}{\cot A+\cot \left(\frac{\pi}{3}\right)}: \frac{1}{\cot B+\cot \left(\frac{\pi}{3}\right)}: \frac{1}{\cot C+\cot \left(-\frac{\pi}{3}\right)}\right)
\end{aligned}
$$

This is the first Fermat point, X_{13} of [4].
Corollary 3 (Hatzipolakis [2]). Given a reference triangle ABC and two points P and Q, let R_{a} be the intersection of the reflections of the lines $B P, C P$ in the lines $B Q, C Q$ respectively (see Figure 3). Similarly define the points R_{b} and R_{c}. The circumcircles of triangles $R_{a} B C, R_{b} C A, R_{c} A B$ are concurrent at a point
$f(P, Q)=\left(\frac{1}{\cot A-\cot \left(2 x^{\prime}-x\right)}: \frac{1}{\cot B-\cot \left(2 y^{\prime}-y\right)}: \frac{1}{\cot C-\cot \left(2 z^{\prime}-z\right)}\right)$,
where

$$
\begin{array}{lcc}
x=(P B, P C), & y=(P C, P A), & z=(P A, P B) \\
x^{\prime}=(Q B, Q C), & y^{\prime}=(Q C, Q A), & z^{\prime}=(Q A, Q B) . \tag{3}
\end{array}
$$

Proof. Let $x^{\prime \prime}=\left(R_{a} B, R_{a} C\right)$. Note that

$$
\begin{aligned}
x^{\prime \prime} & =\left(R_{a} B, Q B\right)+(Q B, Q C)+\left(Q C, R_{a} C\right) \\
& =(Q B, Q C)+\left(R_{a} B, Q B\right)+\left(Q C, R_{a} C\right) \\
& =(Q B, Q C)+(Q B, P B)+(P C, Q C) \\
& =(Q B, Q C)+(Q B, Q C)-(P B, P C) \\
& =2 x^{\prime}-x .
\end{aligned}
$$

Similarly, $y^{\prime \prime}=\left(R_{b} C, R_{b} A\right)=2 y^{\prime}-y$ and $z^{\prime \prime}=\left(R_{c} A, R_{c} B\right)=2 z^{\prime}-z$. Hence,

$$
x^{\prime \prime}+y^{\prime \prime}+z^{\prime \prime} \equiv 2\left(x^{\prime}+y^{\prime}+z^{\prime}\right)-(x+y+z) \equiv 0 \bmod \pi .
$$

By Corollary 2 , the circumcircles of triangles $R_{a} B C, R_{b} C A, R_{c} A B$ are concurrent at the point $R=f(P, Q)$ given by (2).

Figure 3.
Clearly, for the incenter $I, f(P, I)=P^{*}$, since $R_{a}=R_{b}=R_{c}=P^{*}$, the isogonal conjugate of P.
Corollary 4. The mapping f preserves isogonal conjugation, i.e.,

$$
f^{*}(P, Q)=f\left(P^{*}, Q^{*}\right)
$$

Proof. If the points P and Q are defined by the directed angles in (3), and $R=$ $f(P, Q), S=f\left(P^{*}, Q^{*}\right)$, then by Corollary $3,\left(R^{*} B, R^{*} C\right)=A-\left(2 x^{\prime}-x\right)$ and

$$
\begin{aligned}
(S B, S C) & \equiv 2\left(Q^{*} B, Q^{*} C\right)-\left(P^{*} B, P^{*} C\right) \\
& \equiv 2\left(A-x^{\prime}\right)-(A-x) \\
& \equiv A-\left(2 x^{\prime}-x\right) \\
& \equiv\left(R^{*} B, R^{*} C\right) \bmod \pi .
\end{aligned}
$$

Similarly, $(S C, S A) \equiv\left(R^{*} C, R^{*} A\right)$ and $(S A, S B) \equiv\left(R^{*} A, R^{*} B\right) \bmod \pi$. Hence, $R^{*}=S$, or $f^{*}(P, Q)=f\left(P^{*}, Q^{*}\right)$.

References

[1] N. Dergiades, Hyacinthos message 17892, June 20, 2009.
[2] A. P. Hatzipolakis, Hyacinthos message 17281, February 24, 2009.
[3] A. P. Hatzipolakis, Hyacinthos message 17893, June 20, 2009.
[4] C. Kimberling, Encyclopedia of Triangle Centers, available at http://faculty.evansville.edu/ck6/encyclopedia/ETC.html.
[5] P. Yiu, Introduction to the Geometry of the Triangle, Florida Atlantic University Lecture Notes, 2001.

Nikolaos Dergiades: I. Zanna 27, Thessaloniki 54643, Greece
E-mail address: ndergiades@yahoo.gr

