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Perpendicular Bisectors of Triangle Sides

Douglas W. Mitchell

Abstract. Formulas, in terms of the sidelengths and area, are given for the
lengths of the segments of the perpendicular bisectors of the sides of a trian-
gle in its interior. The ratios of perpendicular bisector segments to each other are
given, and the ratios of the segments into which the perpendicular bisectors are
divided by the circumcenter are considered. Then we ask whether a set of three
perpendicular bisector lengths uniquely determines a triangle. The answer is no
in general: depending on the set of bisectors, anywhere from zero to four (but no
more than four) triangles can share the same perpendicular bisector segments.

1. Introduction

It is well-known that the perpendicular bisectors of the sides of a triangle meet
at a single point, which is the center of the circumcircle. Bui [1] gives results for
similar triangles associated with the perpendicular bisectors. In this paper wefirst
find formulas for the lengths of the segments of the perpendicular bisectorsin the
interior of a given triangle. Then we study the question of existence of triangles
with prescribed lengths of perpendicular bisector segments.

Lemma 1. The perpendicular bisector segment through the midpoint of one side
terminates at a point on the longer of the remaining two sides (or at their intersec-
tion if these sides are equal).
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Proof. Let the perpendicular bisector pass through the midpointF of the sideAB
of triangleABC. Consider the case when both anglesA andB are acute. In Figure
1,AF = FB andFE ≥ FD. We show thatBC ≥ AC. Now,

tanA =
EF

AF
≥ DF

AF
=

DF

BF
= tanB.
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SincetanA ≥ tanB and anglesA andB are both acute,∠A ≥ ∠B. It follows
thatBC ≥ AC.

The other cases (when one of anglesA andB is obtuse or a right angle) are clear
(see Figure 2 in the case of an obtuse angleA). �

Lemma 1 will be used in constructing the perpendicular bisectors in Figures 3-
5. Henceforth we will adopt the notational convention that the sidesa, b, andc
opposite to anglesA, B, andC are such thata ≥ b ≥ c (and henceA ≥ B ≥ C).
We denote bypa , pb, pc the lengths of the perpendicular bisector segments on the
sidesBC, CA, AB respectively. Also,∆ denotes the area of the triangle.

Theorem 2. Let a ≥ b ≥ c.

pa =
2a∆

a2 + b2 − c2
, pb =

2b∆

a2 + b2 − c2
, pc =

2c∆

a2 − b2 + c2
.
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Proof. (i) Figure 3 illustrates the case where∠A is acute; the proof is identical
when∠A is right or obtuse. We havetanC = pa

a

2

since by Lemma 1 bisector

pa meets sideb becauseb ≥ c. We know from [2] (which applies since∠C is
oblique since∠A ≥ ∠C) that∆ = tanC

4 (a2 + b2 − c2). Combining these gives
pa = 2a∆

a2+b2−c2
.

(ii) Figure 4 illustrates the case where∠A is acute; the proof is again identical
when∠A is right or obtuse. We havetanC = pb

b

2

(since by Lemma 1 bisectorpb

intersets sidea becausea ≥ c). Again∆ = tanC
4 (a2 + b2 − c2). Combining these

givespb = 2b∆
a2+b2−c2

.
(iii) Figure 5 illustrates the case where∠A is acute; the proof is again identical

when∠A is right or obtuse. We havetanB = pc
c

2

since by Lemma 1 bisector

pc intersects sidea becausea ≥ b. By [2] (which applies since∠B is oblique
since∠A ≥ ∠B) we have∆ = tanB

4 (a2 − b2 + c2). Combining these gives
pc =

2c∆
a2−b2+c2

. �

Since Heron’s well-known formula gives∆ in terms ofa, b, andc, Theorem 2
gives each of the perpendicular bisectors in terms of the three sides. Moreover, we
can apply the law of cosines for each angle to obtain these symmetric area formulas
in terms of one side, another perpendicular bisector and a third angle.
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Corollary 3. ∆ = pab cosC = pba cosC = pca cosB.

Theorem 4. Let a ≥ b ≥ c.
(i) pa ≥ pb;
(ii) pc ≥ pb;
(iii) pa ≥ pc, pa = pc and pa < pc are all possible.

Proof. (i) By Theorem 2,pa
pb

= a
b
= sinA

sinB
. SinceA ≥ B andA + B < π,

sinA ≥ sinB. It follows thatpa ≥ pb.
(ii) From Figures 4 and 5,

pb
pc

=
b
2 tanC
c
2 tanB

=
b sinC

cosC
· cosB

c sinB
=

cosB

cosC
≤ 1

sinceB ≥ C are acute angles.
(iii) We show that all scenarios are possible by examples. Leta = 6 andc = 4,

so that4 ≤ b ≤ 6.

b ∆ pa pc

4 3
√
7 ∆

3
2∆
9 pa > pc

2
√
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5

5∆
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5∆
18 pa = pc

5 15
√

7
4

4∆
15

8∆
27 pa < pc

�

Since we also know [3] that the distances from the circumcenter - which is the
intersection of the perpendicular bisectors - to the sidesAC andAB are in the
ratios cosB

cosC , we have in Figure 6 thatOE
OF

= cosB
cosC = ED′

FD
(by Theorem 4(ii)) so

OE
ED′ =

OF
FD

. Hence:
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Corollary 5. In an acute triangle the circumcenter divides the perpendicular bi-
sectors pb and pc in equal proportions.

A similar result applies when the triangle is obtuse (in which case the circum-
center lies outside the triangle):
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Corollary 6. In an obtuse triangle, the perpendicular bisectors pb and pc extended
to the circumcenter are divided by their respective intersecting triangle sides in
equal proportions.

2. Do the perpendicular bisectors uniquely determine a triangle?

Theorem 7. Given positive pa, pb, pc satisfying pa ≥ pb and pc ≥ pb, there are no
more than two non-congruent triangles with a ≥ b ≥ c and perpendicular bisector
segments of lengths pa, pb, pc.

Proof. By Theorem 2,pa
pb

= a
b
, and

pc
pb

=
c
b
· (a2 + b2 − c2)

a2 − b2 + c2
=

c
b

(

(

a
b

)2
+ 1−

(

c
b

)2
)

(

a
b

)2 − 1 +
(

c
b

)2

Puttingα := pa
pb

≥ 1, γ := pc
pb

≥ 1, andx := c
b
, we rearrange this as

f(x) = x3 + γx2 − (α2 + 1)x+ γ(α2 − 1) = 0. (1)

Sincex is a ratio of sides, anda− b < c ≤ b, we must havex ∈ (α− 1, 1].
If α−1 = 0 (the isosceles case ofa

b
= pa

pb
= 1), (1) becomesx(x2+γx−2) = 0,

and has exactly one solution in the interval(α− 1, 1].
If α − 1 > 0, (1) exhibits two switches in the signs of parameters, so by

Descartes’ rule the cubic has either2 or 0 positive roots. Thus the number of
non-similar triangles cannot be more than2. Since similar but non-congruent tri-
angles cannot share the same absolute sizes of perpendicular bisectors, the number
of non-congruent triangles sharing the same(pa, pb, pc) can be no more than2. �

Remark. Sincec > a− b, we must havex > α− 1. If γ = 1, (1) becomes

(x+ α+ 1)(x− 1)(x− (α− 1)) = 0.

It follows that x = 1 is the only admissible root. This results in an isosceles
triangle.

Having already given an exact number of triangles above for the casesof pa = pb
andpc = pb, we next find specific parameter conditions that are necessary and
sufficient for the number of triangles with specified(pa, pb, pc), i.e., the number
of admissible solutions of (1) - to be0, 1, or 2 whenα andγ both exceed1, i.e.,
pa > pb andpc > pb.

It is easy to see that the cubicf(x) in (1) has a local minimum at

x0 =
−γ +

√

γ2 + 3(α2 + 1)

3
> 0,

and a local maximum atx1 =
−γ−

√
γ2+3(α2+1)

3 < 0.
It is routine to verify that the local minimumx0 ∈ (α − 1, 1) if and only if

γ ∈
(

α2
−2
2 , −α2+3α−1

α−1

)

.
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Theorem 8. Given pa > pb and pc > pb, let α = pa
pb

and γ = pc
pb

. The number of
triangles with perpendicular bisector segments of lengths pa, pb, pc is

2 if and only if γ ∈
(

α2
−2
2 , −α2+3α−1

α−1

)

and f(x0) < 0,

1 if and only if γ ∈
(

α2
−2
2 , −α2+3α−1

α−1

)

and f(x0) = 0,

0 otherwise.

Proof. Note thatf(α− 1) = 2α(α− 1)(γ − 1) > 0 andf(1) = α2(γ − 1) > 0.
If the local minimumx0 ∈ (α − 1, 1), then the number of roots off(x) in the

interval2, 1, or 0 according asf(x0) < 0, = 0, or> 0.
If x0 /∈ (α− 1, 1), thenf(x) is monotonic and has no root in the interval.�

While no more than two distinct triangles can share the samepa, pb, pc, one must
also consider the possibility that up to two more triangles could share the same
three perpendicular bisectors segments{p1, p2, p3} with different assignments of
the bisectors to the long, medium, and short sides of the triangle. This is because,
by Theorem 4, the medium-length sideb has the shortest perpendicular bisector
but either the longest sidea or the shortest sidec can have the longest bisector.
Therefore, given segments of lengthsp1 ≥ p2 ≥ p3, we seek triangles(a, b, c)
with a ≥ b ≥ c and(pa, pb, pc) = (p1, p3, p2) or (p2, p3, p1). Thus:

Corollary 9. There are a maximum of four triangles with the three segments of
given lengths as perpendicular bisector segments.

We conclude this paper by giving explicit examples showing that the number of
triangles in Corollary 9 can be any of0, 1, 2, 3, 4.

(i) n = 4: Consider(p1, p2, p3) = (20, 18, 15).
If (pa, pb, pc) = (20, 15, 18), α = 4

3 , γ = 6
5 , and

f1(x) = x3+
6

5
x2− 25

9
x+

14

15
=

(

x− 7

15

)

(

x−
√
97− 5

6

)(

x+

√
97 + 5

6

)

.

This gives two triangles similar to(20, 15, 7) and(8, 6,
√
97− 5).

On the other hand, if(pa, pb, pc) = (18, 15, 20), α = 6
5 , γ = 4

3 , and

f2(x) = x3+
4

3
x2−61

25
x+

44

75
=

(

x− 4

5

)

(

x−
√
421− 16

15

)(

x+

√
421 + 16

15

)

.

This gives two triangles similar to(6, 5, 4) and(18, 15,
√
421− 16).

(ii) For n = 3, let (p1, p2, p3) = (3, 2
√
2,

√
5).

If (pa, pb, pc) = (3,
√
5, 2

√
2), α =

√

5
3 , γ = 2

√

2
√

5
, and

f3(x) = x3 +
2
√
2√
5
x2 − 14

5
x+

8
√
2

5
√
5
=

(

x+
4
√
2√
5

)(

x−
√
2√
5

)2

.

This gives a triangle similar to(3,
√
5,

√
2).
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If (pa, pb, pc) = (2
√
2,
√
5, 3), then

f4(x) = x3+
3√
5
x2−13

5
x+

9

5
√
5
=

(

x− 1√
5

)

(

x−
√
13− 2√

5

)(

x+

√
13 + 2√

5

)

.

The two roots in the interval(0, 1) give the triangles similar to(2
√
2,

√
5, 1) and

(2
√
2,

√
5,

√
13− 2).

(iii) For n = 2, let (p1, p2, p3) = (39, 30, 25). If (pa, pb, pc) = (30, 25, 39),
thenα = 6

5 , γ = 39
25 , and

f5(x) = x3 +
39

25
x2 − 61

25
x+

429

625
=

(

x+
13

5

)(

x− 11

25

)(

x− 3

5

)

.

The two positive roots are in(α− 1, 1) =
(

1
5 , 1
)

. These give two triangles similar
to (30, 25, 11) and(6, 5, 3).

On the other hand, if(pa, pb, pc) = (39, 25, 30), the cubic

f6(x) = x3 +
6

5
x2 − 2146

625
x+

5376

3125

has only one real root which is negative (see Figure 7). There is no triangle with
(pa, pb, pc) = (39, 25, 30).

10
−3

y = f6(x)

y = f8(x)

Figure 7

(iv) Forn = 1, consider(p1, p2, p3) = (8, 5,
√
19). If (pa, pb, pc) = (5,

√
19, 8),

then(α, γ) =
(

5
√

19
, 8

√

19

)

, and

f7(x) = x3 +
8√
19

x2 − 44

19
x+

48

19
√
19

=

(

x+
12√
19

)(

x− 2√
19

)2

.

This give a single triangle similar to(5,
√
19, 2).
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On the other hand, with(pa, pb, pc) = (8,
√
19, 5), we have(α, γ) =

(

8
√

19
, 5

√

19

)

,

and

f8(x) = x3 +
5√
19

x2 − 83

19
x+

225

19
√
19

has only one real root which is negative (see Figure 7). There is no such triangle.
(v) Finally, forn = 0, we take(p1, p2, p3) = (5, 4, 1). The two cubic polyno-

mials aref9(x) = x3 +5x2 − 17x+75 andf10(x) = x3 +4x2 − 26x+96. Each
of these has exactly one real root which is negative (see Figure 8). Therefore, there
is no triangle with perpendicular bisector segments(5, 4, 1).

10
−10

y = f9(x)

y = f10(x)

References

[1] Q. T. Bui, On a triad of similar triangles associated with the perpendicularbisectors of the sides
off a triangle,Forum Geom., 10 (2010) 1–6.

[2] D. Mitchell, The area of a quadrilateral,Math. Gazette, 93 (2009) 306–309.
[3] E. W. Weisstein, Exact trilinear coordinates, fromMathWorld - A Wolfram Web Resource,

http://mathworld.wolfram.com/ExactTrilinearCoordinates.html.

Douglas W. Mitchell: 1002 Saman, Carambola, Christiansted, St. Croix, USVirgin Islands
E-mail address: doug.mitchell.1234@hotmail.com


