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A Gallery of Conics by Five Elements

Paris Pamfilos

Abstract. This paper is a review on conics defined by five elements, i.e., either
lines to which the conic is tangent or points through which the conic passes.
The gallery contains all cases combining a number (n) of points and a number
(5− n) of lines and also allowing coincidences of some points with some lines.
Points and/or lines at infinity are handled as particular cases.

1. Introduction

In the following we review the construction of conics by five elements: points
and lines, briefly denoted by (αPβT ), with α + β = 5. In these it is required to
construct a conic passing through α given points and tangent to β given lines. The
six constructions, resulting by giving α, β the values 0 to 5 and considering the
data to be in general position, are considered the most important ([18, p. 387]),
and are to be found almost on every book about conics. It seems that constructions
for which some coincidences are allowed have attracted less attention, though they
are related to many interesting theorems of the geometry of conics. Adding to the
six main cases those with the projectively different possible coincidences we land
to 12 main constructions figuring on the first column of the classifying table below.
The six added cases can be considered as limiting cases of the others, in which
a point tends to coincide with another or with a line. The twelve main cases are
the projectively inequivalent to which every other case can be reduced by means
of a projectivity of the plane. There are, though, interesting classical theorems
for particular euclidean inequivalent cases worth studying, as, for example, the
much studied case of parabolas tangent to four lines (case (0P5T1) in §7.2). In
this review the frame is that of euclidean geometry and consequently a further
distinction of ordinary from points and lines at infinity is taken into account. All
of the (50) constructions classified below are known and can be found in the one
or the other book on conics (e.g. [7, pp. 136]), but nowhere come to discussion
all together, so far I know. In a few cases (e.g. §11.1, §3.2) I have added a proof,
which seems to me interesting and have not found elsewhere.
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1 2 3 4 5 6

2 (5P0T ) (5P10T ) (5P20T )
3 (4P1T ) (4P1T1) (4P11T ) (4P21T )
4 (3P2T ) (3P2T1) (3P12T ) (3P22T )
5 (2P3T ) (2P3T1) (2P13T ) (2P23T )
6 (1P4T ) (1P4T1) (1P14T )
7 (0P5T ) (0P5T1)

8 (4P1T )1 (4P11T1) (4P11T )1 (4P11T )i (4P21T )1 (4P21T )i
9 (3P2T )1 (3P2T1)1 (3P12T1) (3P12T )i (3P22T )1 (3P22T )i
10 (3P2T )2 (3P12T1)1 (3P12T )1i (3P22T )2i
11 (2P3T )1 (2P3T1)1 (2P13T1) (2P13T )i (2P23T )i
12 (2P3T )2 (2P3T1)2 (2P13T1)1 (2P13T )1i (2P23T )2i
13 (1P4T )1 (1P4T1)1 (1P14T1) (1P14T )i

The above table serves as the table of contents of this paper, the row labels are the
section numbers and the column labels the subsection numbers. The column with
label 1 lists the symbols of the twelve projectively inequivalent cases. Each row
of the table comprises the cases, which are projectively equivalent to the one of
the first column. The notation used is a slight modification of the one introduced
by Chasles ([3, p. 304]). The symbol Pn means that n of the given points are
at infinity and T1 means that one of the tangent lines is the line at infinity, later
meaning that the conic, to be constructed, is a parabola. The indices, which adhere
to the right parenthesis are optional. When absent, it means that the configuration is
in general position, i.e. none of the ordinary points is coincident with an ordinary
line. When present it means that one or two of the points are correspondingly
coincident with one or two tangents. The indices i, 2i mean that one/two ordinary
lines are correspondingly coincident with one/two points at infinity. The index
1i means that an ordinary point coincides with a line and also a point at infinity
coincides with the point at infinity of an ordinary line.

Except for the coincidence suggested by the corresponding symbol, the other
data are assumed to be in general positions in the projective sense. For example,
the symbol (3P12T )i stands for the construction of a hyperbola given two points,
an asymptote and a tangent. These four elements are assumed in general posi-
tion, implying that no further coincidences are present, that the intersection of the
asymptote and the tangent are not collinear to the two points, that the line of the
two points is not parallel to the tangent or the asymptote, etc. The statements on the
number of solutions or non existence in each case, presuppose such a restriction.
Throughout the text, existence is meant in the real plane.

The following notation is also used: tX denotes the tangent at X , Y = X(A,B)
denotes the harmonic conjugate of X with respect to (A,B), X = (a, b) denotes
the intersection of lines a, b. Points at infinity are occasionally denoted by [A],
the same symbol indicating also the direction determined by that point at infinity.
For a line e the symbol [e] denotes its point at infinity. For a point at infinity A
the symbol XA denotes the parallel from X to the direction determined by A.
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Degenerate conics, consisting of a product of two lines a, b, are represented by
a · b. Regarding hyperbolas, asymptotics are distinguished from asymptotes. The
first term gives the direction only, the second denotes the precise line.

Regarding the organization of the material, there follow three preliminary sec-
tions on the background, which comprise: (a) Involutions (§1.1), (b) Pencils and
Families of conics (§1.2), (c) The great theorems (§1.3). Then follow fifty sec-
tions handling the inequivalent euclidean constructions. The sections are divided
in twelve groups, each group headed by the problem to which all other of the group
are projectively equivalent.

1.1. Involutions. Involutions are homographies of projective lines with the prop-
erty f2 = I ⇔ f−1 = f . Using proper coordinates, involutions are described by
functions of the form

y =
ax+ b

cx− a
⇔ x =

ay + b

cy − a
,

whose graphs are rectangular hyperbolas symmetric with respect to the diagonal
line y = x. Such functions are completely determined by prescribing their values

x

y

y=
x

Figure 1. Graph of an involution with existing fixed points

on two elements (X, f(X)), (Y, f(Y )) and they have either two fixed points or
none. Figure 1 shows a case in which there are two fixed points. When the
hyperbola has the two branches totally contained in the two sides of the line y =
x, the corresponding function has no fixed points. An important property of a
pair (X, f(X)), of related points of an involution, frequently used below, is that it
consists of harmonic conjugates with respect to the fixed points of f , when these
exist ([7, p. 100], [22, I, p.102], [17, p. 167], [9, p. 35], [2, I, p. 137]).

A B C D

E F

Figure 2. Common harmonics (E,F ) of (A,B) and (C,D)

The practical issue of finding the fixed points of involutions is related to the
idea of common harmonics of two pairs (A,B), (C,D) of collinear points. This
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is another pair (E,F ) of points, which are, as the name suggests, simultaneously
harmonic conjugate with respect to (A,B) and with respect to (C,D) (see Figure
2). If such a pair (E,F ) exists, then it is easily seen that every circle d passing

A B C D

E F
c1

c2

d

Figure 3. Construction of the common harmonics (E,F ) of (A,B) and (C,D)

through E,F is orthogonal to the circles c1, c2 with corresponding diameters AB
and CD (see Figure 3). Thus, in order to find the common harmonics geomet-
rically, set two circles c1, c2 on diameters, respectively, AB and CD and draw a
circle d simultaneously orthogonal to c1 and c2 (see Figure 4). In case one of the

A B CE F

[D]c2c1 d

Figure 4. Common harmonics (E,F ) of (A,B) and (C, [D])

points, D say, is a point at infinity then c2 is the line orthogonal to AB at C and we
can take the circle d to be the one centered at C and orthogonal to c1, points E,F
lying then symmetric with respect to C (see Figure 4).

The common harmonics are precisely the limiting points of the coaxal system
(pencil) of circles determined by c1 and c2 ([16, p. 118]). They exist, precisely
when the circles c1, c2 are non-intersecting.

1.2. Pencils of conics. Pencils of conics are lines in the five-dimensional projective
space of conics. This is reflected in the generation of a pencil as the set D of linear
combinations c = α ·c1+β ·c2, where c1 = 0, c2 = 0 are the equations of any two
particular members of the pencil. Then c = 0 represents the equation of the general
member of the pencil for arbitrary real values of α, β with |α|+ |β| �= 0. The basic
pencil, called of type-I , is that of all conics passing through four points (see Figure
5). There are five projectively inequivalent pencils, characterized by the fact that
all their members intersect by two at the same points, real or imaginary, with the
same multiplicities. These are referred to as types I to V pencils ([22, I, p. 128])
and can be considered as limiting cases of the type I pencil. Type II , for instance,
results by fixing line e = AD and letting D coincide with A. The resulting pencil
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A

B C

D

E

Figure 5. The pencil of conics through A, B, C, D

(seen in §9.1) consists of all conics passing through A,B,C and tangent to e at A.
Another type of pencil is obtained from a type I pencil by fixing lines a = AB
and c = CD and letting point B converge along a to A and D converge along c to
C. The resulting pencil, referred to as type IV pencil (seen in §10.1), consists of
all conics tangent to lines a, c correspondingly at their points A and C.

Pencils of conics contain degenerate members, at most three ([2, II, p. 124]).
In Figure 5 the degenerate members are visible, consisting of the pairs of lines
AB · CD, AD · BC and AC · BD. In the analytic description of pencils c =
α · c1 + β · c2, the conics c1, c2 can be degenerate members, and this is often
convenient and extensively used below.

To every type of pencil corresponds an analogous range of conics or tangential
pencil of conics ([2, II, p. 199], with a notation slightly different from that of
Veblen). For example to type I pencils corresponds the range of type I∗ of conics,
which are tangent to four lines in general positions (see §7.1). Ranges are pencils
of conics in the dual projective plane P ∗ consisting of all lines of the projective
plane P . To each pencil of type X corresponds its dual range X∗ with properties
resulting from those of X by duality.

A particular property of pencils, together with its dual for ranges, is of interest
for our subject. For instance, in the case of a pencil D of conics through points A,
B, C, D, it is known ([2, II, p. 197]) that the polars of a fixed point X with respect
to all members of the pencil pass through a point Y . This defines a quadratic
transformation Y = f(X), which in the coordinates with respect to the projective
base {E,F,G,A}, with E = (AB,CD), F = (AD,BC), G = (AC,BD), is
represented by

x′ =
1

x
, y′ =

1

y
, z′ =

1

z
.
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A
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F
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e f

X

Y

G

Figure 6. The eleven points conic ke of A, B, C, D and line e

The image of a line e under this transformation is a conic ke circumscribing trian-
gle EFG and passing through eight additional points, therefore called an eleven
point conic ([1, p. 97], [9, p. 66]). Six of the points are the harmonic conjugates
W = V (X,Y ) of the intersection point V = (XY, e), where X , Y are taken from
{A,B,C,D}. The two remaining points, if real, are the intersection points of ke
with line e and simultaneously the contact points of two members of the pencil D,
which are tangent to e (a case handled in §8.1).

The dual to the previous property relates to the range D∗ of conics k tangent to
four lines a, b, c, d (see Figure 7). According to this, the poles of a line h with
respect to the members of D∗ lie on a line h′ and the transformation h′ = F ∗(h) is
a quadratic one of the same nature as the previous one, differing only in that it op-
erates on the dual projective plane P ∗. Line h′ can be found by a simple criterion,
resulting by considering the triangle of diagonals (efg in Figure 7). Lines h, h′
intersect each side s of this triangle at points X,Y , which are harmonic conjugate
with respect to (U, V ), where U, V are the vertices of the quadrilateral lying on
s. The images h′ under F ∗ of all lines h passing through a fixed point Q are the
tangents of a conic kQ inscribed in the triangle efg and tangent to eight additional
lines, therefore called an eleven tangents conic. Six of these lines are the harmonic
conjugates Q(s, s′) of Q with respect to all pairs (s, s′) taken from {a, b, c, d}. The
two remaining tangents, if real, are the tangents through Q of the members of D∗
passing through Q (a case handled in §6.1).

Roughly described, a standard method of constructing a conic by five elements
is to find a pencil or range satisfying four of the given conditions, and then use the
fifth condition to locate the particular member(s) of the pencil satisfying it. In the
case of type I pencils, any fifth point E, different from A, B, C, D, determines
exactly one conic of the pencil containing it (a case handled in §2.1).

Pencils of conics, passing through two different points Q,R can be transformed
to pencils of circles by a complex projective map, which sends Q,R to the circular
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h'

Q
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kQ

k

X
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V

Figure 7. The eleven tangents conic kQ of a, b, c, d and point Q

points at infinity I, J ([9, p. 71]). By such a map a type I pencil can be transformed
to a pencil of intersecting circles and all related conic construction problems reduce
to corresponding Apollonius circle construction problems ([6]). This method is
concisely expounded in [10].

1.3. The great theorems. The basic tool in the context of the present subject is
Desargues’ theorem, for various types of pencils and ranges, as neatly described in
[22, p. 128]. The theorem asserts that a pencil intersects on a fixed line e, through
its members, pairs of points (X,Y ) in involution, later meaning, that there is an
involution f on e, such that Y = f(X) ⇔ X = f(Y ). The interesting fact is that
f is completely determined by the intersections of e with the degenerate members
of the pencil, which are products of lines. Line e is assumed to be different from
the lines contained in degenerate members of the pencil.

In its dual form, Desargues’ theorem, referred to also as Plücker’s theorem ([4,
p. 25], [2, II, p. 202]) states, that the pairs of tangents (x, y) from a fixed point Q to
the members of a range, are in involution, later meaning, that there is an involution
f∗ on the pencil Q∗ of lines through Q, such that y = f∗(x) ⇔ x = f∗(y). This
involution is determined again by the degenerate members of the range, which are
pairs of points. In the case of ranges of conics tangent to four lines, for instance,
the degenerate members are pairs of intersection points of the four lines and the
involution on Q∗ is determined by two pairs of lines joining Q to two such pairs of
points ([22, I, p. 129], [9, p. 50], [2, II, p. 197]). Point Q is assumed to be different
from the points of degenerate members.

The somewhat difficult to visualize involution on Q∗ can be represented by in-
tersecting the rays through Q with a fixed line e �/ Q. In this way the involution
f∗ on Q∗ defines an involution f on e and the fixed points (rays) of f∗ trace on
e the fixed points of f . Quite typically for our subject, the requested conics are
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intimately related to the fixed elements of such involutions ([20, p. 69], [19, p.
365], [2, p. 198, II]).

Pascal’s theorem, that the opposite sides of a hexagon, inscribed in a conic,
intersect on a line, is used in the present context in order to find additional points on
the requested conics. The theorem is used also in its various versions for inscribed
pentagons, quadrangles and triangles ([22, I, p. 111], [17, p. 156], [2, II, p. 176]).

Brianchon’s theorem, which is dual to Pascal’s, asserts that the lines through
opposite vertices of a circumscribed to a conic hexagon pass through a fixed point.
Again the theorem and its versions for pentagons, quadrangles and triangles is used
in order to find additional points on the requested conics.

2. Five points

2.1. Conic through five points (5P0T ). Construct a conic passing through five
points A,B,C,D,E. This is the basic construction, to which, all other construc-
tions may be reduced. Analytically this can be done easily by considering the
equations of two line-pairs defined by the five points ([18, p. 232]). Let, for exam-
ple, the line-pairs (AB,CD), (AC,BD) be given correspondingly by equations
(f = 0, g = 0), (h = 0, j = 0). Then the equation

kλ,μ = λ · (f · g) + μ · (h · j) = 0,

for variable λ and μ, represents the pencil D of all conics passing through A, B,
C, D. The requirement, for such a conic, to pass through E, leads to an equation
for λ, μ:

kλ,μ(E) = 0,

from which λ, μ are determined up to a multiplicative constant, and through this a
unique conic is defined as required.

Geometrically, one can use Pascal’s theorem to produce, from the given five,
arbitrary many other points P lying on the conic. Figure 8 illustrates the way this

A
B

C

D

E

F

X

Y

P

Z

Figure 8. Pascal’s theorem producing more points on the conic

is done. Start with an arbitrary point X on line DE and define the intersection
point Y = (CD,AX). Join this point to the intersection point F = (AB,DE)
and extend the line to find the intersection point Z = (Y F,BC). By Pascal’s
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theorem, the intersection point P = (ZE,AX) is on the conic passing through A,
B, C, D and E. The books of Russell [17, p. 229] and, for more cases Yiu [24, p.
144], contain many useful constructions, which determine various elements of the
conic, such as the intersections with a line, the center, the axes, the foci etc. out of
the five given points.

2.2. Conic through five points, one at infinity (5P10T ). Construct a conic pass-
ing through five points A,B,C,D, [E] in general position. The conic is a hyper-
bola and in some cases a parabola. Additional points can be constructed as in the

A

B
C

D
X

Y

[E]

F

Z
P

e

Figure 9. Finding additional points on the conic through A,B,C,D, [E]

previous section. Start with a point X on line e = DE, find the intersections
Y = (AX,CD), and Z = (FY,BC), where F = (AB,DE) (see Figure 9).
Point P = (ZE,XA) is on the requested conic, which can be constructed to pass
through the five points A,B,C,D, P . There is always a unique solution.

Remark. In general the conic is a hyperbola, and [E] represents the direction of
one of its asymptotes. Fixing points A, B, C, D, there are either none or two
directions [E], determined by the four points, for which the conic passing through
A,B,C,D, [E] is a parabola. This is the case (4P1T1) of §3.2.

2.3. Hyperbola from asymptotics and three points (5P20T ). Construct a conic
passing through five points A,B,C, [D], [E], thus a hyperbola with asymptotic
directions given by [D], [E]. The pentagon ABCDE is infinite with DE the line

A

B

C

[F]

[D] [E]

Y

Z

P

Figure 10. Pascal’s theorem with D,E at infinity
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at infinity and its intersection F with AB is also at infinity. An arbitrary ray of
the pencil A∗ of lines through A, and its intersection Y with CD defines the point
Z = (Y F,BC) and P = (ZE,AY ). Last is a point on the requested conic (see
Figure 10). There is always one solution. Figure 11 shows a related pencil consist-

B

[D] [E]

A

Figure 11. The pencil of conics passing through A,B, [D], [E]

ing of all conics passing through A,B, [D], [E], i.e. all hyperbolas with asymptotic
directions [D], [E] and passing through the points A,B.

3. Four points and one tangent

A

B

C

D

E
F

G

H

I J e

K L

Figure 12. The two conics through A, B, C, D tangent to line e

3.1. Conic by four points and one tangent (4P1T ). Construct a conic passing
through four points A, B, C, D and tangent to one line e. By Desargues’ theo-
rem (see §1.3), each member of the pencil D of conics through A, B, C, D (seen
in §1.1) intersects line e to a pair of points in involution. The contact points K,L
of the requested conic with e are the fixed points of this involution. Two pairs
of points, defining the involution, are the intersections of e with two degenerate
members c1, c2 of the pencil D, consisting of the pairs of lines c1 = AB ·CD and
c2 = AD · BC, intersecting the line respectively in (E,F ) and (I, J) (see Figure
12). The fixed points of the involution are the common harmonics (K,L) of the
pairs (E,F ), (I, J).

An alternative construction for this case relates to the eleven points conic of
four points and a line (see §1.2), consisting of the poles of line e with respect to all



A gallery of conics by five elements 305

conics of the pencil D. This conic intersects line e precisely at its contact points

A

B

C

D

e

K L

P

Q

R

ST

c

Figure 13. Eleven point conic of ABCD and line e

K,L with the requested conics.
Next two figures display the domains of existence of solutions for variable D,

assuming given the positions of A,B,C and line e.

A

B

C

D

JE I F

(1)

(2) (3)

(5) (4)

e

Figure 14. Domains of existence for variable D, e non-intersecting ABC

A

B

C

D

J E

IF

(1)

(2)

(3)

(5) (4)
e

Figure 15. Domains of existence for variable D, e intersecting ABC

3.2. Parabola through four points (4P1T1). Construct a conic tangent to the line
at infinity, i.e. a parabola, passing through four points A, B, C, D. The only
difference from the previous case is that line e is now at infinity. The involution
on e can be represented on the pencil O∗ of lines through the arbitrary but fixed
point O ([4, p. 40], [20, p. 69], [17, p. 180]). In fact, draw from O parallels to the
lines joining all possible pairs of the four points A, B, C, D. They result in three
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A
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CD
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L

g

Figure 16. Common harmonic directions

pairs of lines (BD,CA), (AB,CD), (DA,BC), which are in involution. This,
by intersecting the pencil with an arbitrary line g defines an involution in g (see
Figure 16). The corresponding pairs of points (G,H), (I, J), (K,L) of g are in

AB

C

DE

F

AB

CABD

DA

BC

CD

O M

N

G

H

I

J

K
L

g

OM

C'

C''
B'

Figure 17. Parabola through A, B, C, D with axis-direction OM

involution. The common harmonics M,N of these pairs, if they exist, define two
directions OM and ON , i.e. two points at infinity, which represent the directions
of the axis of the requested parabolas, passing through A, B, C, D. Thus, there
are either two or none parabola passing through four points A, B, C, D in general
position. Figure 17 shows how the construction of one of these two parabolas can
be done. Use is made of one of the chords BD of the requested parabola. From the
middle B′ of BD we draw a parallel h to the direction OM . Then we project C on
C ′ and extend CC ′ to its double CC ′′. The projection is by parallels to BD. By a
well known property of parabolas, point C ′′ will also belong to the parabola under
construction. Thus, taking C ′′ as the fifth point we define the parabola as the conic
passing through A, B, C, D and C ′′. An analogous construction can be carried out
for the second parabola, whose axis is parallel to the direction ON . The parabolas
exist if none of the four given points is contained in the triangle of the other three.

Besides this construction of the two parabolas, which is considered the standard
one, there is another approaching the problem from a different point of view. For
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G

e

Figure 18. The two parabolas through A, B, C, D

this, consider the line e parallel to the diagonal EF of the quadrangle ACBD at
half the distance of G = (AB,CD) from EF (see Figure 18). This line is the
common tangent to the two requested parabolas. This follows, for example, by
considering the conic passing through the eight contact points of the common tan-
gents of two conics ([18, p. 345]) or the properties of the so-called harmonic locus
of two conics, specialized for two parabolas ([14, II, p. 121]). The contact points
V,W of the two parabolas with e are the common harmonics of the point-pairs
(E1, E2), (F1, F2), where E1 = (AD, e), E2 = (BC, e), F1 = (AC, e), F2 =
(BD, e). Once V,W are constructed, the parabolas can be defined to pass through
the corresponding fivetuples of points.

Notice that every conic of the pencil D has a pair of conjugate diameters parallel
to the axes of the two parabolas ([19, p. 292]).

3.3. Conic by 3 points, 1 at infinity, 1 tangent (4P11T ). Construct a conic passing
through four points A,B,C, [D], and tangent to line e. The conic is either a hy-
perbola with one asymptotic direction [D] or a parabola with axis parallel to [D].
Using the method of §3.1 we construct the fixed points D1, D2 of the involution,

[D]A

B
C

D1D2

e

E IGJ F H

Figure 19. The two conics through A,B,C, [D] tangent to e

defined on line e by its intersections with the line pairs (AB,CD), (AC,BD),
(AD,BC). The common harmonics D1, D2 of the point-pairs (E,F ), (G,H) are
the contact points with line e (see Figure 19). Adding one of the Di to the three
points A,B,C we can, as in §8.1, construct a fifth point and pass a conic through
the five points. Fixing A,B,C and the position of line e, there are some directions
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A

B C
[D]

e

(1) (2)

Figure 20. Angular domains of existence

[D] for which no solutions exist. Figure 20 shows a case, in which e does not
intersect the interior of ABC and the two angular domains for the direction AD
for which there are solutions of the problem.

In general, the conics are two hyperbolas with one asymptotic direction deter-
mined by the point at infinity D, or a pair of a hyperbola, as before, and a parabola
with axis direction [D]. If the line e does not intersect the interior of the triangle
ABC, then, for four particular directions [D], there are corresponding parabolas
passing through A,B,C, axis direction [D] and tangent to e. The directions [D],
for which this happens, can be determined from the triangle ABC and the line e.
This is the case (3P2T1), handled in §4.2. The problem is related to the pencil of
conics through A,B,C, [D]. This is a specialization of the one in §1.1, resulting
from it by sending D at infinity (see Figure 21). In this pencil, all members ex-

[D]A

B

C

Figure 21. The pencil of conics through A,B,C, [D]

cept one are hyperbolas with one asymptotic direction [D]. The one exceptional
member is the parabola constructed in §8.2.

3.4. Hyperbola by 2 points, 2 asymptotics, 1 tangent (4P21T ). Construct a conic
passing through four points A,B, [C], [D] and tangent to a line e. This is a hy-
perbola passing through the points A,B, having directions of asymptotes [C], [D]
and being tangent to line e. This can be reduced to the case (5P20T ) of §2.3 by
locating the contact point S of e with the conic. This is done as in §3.1: Find the in-
tersections (H,G), (E,F ) with e of line-pairs (BD,AC), (BC,AD) respectively
(see Figure 22). The contact points of the conics with e are the common harmonics
S, S′ of these two pairs of points.

An alternative solution results by using the eleven points conic of A,B, [C], [D]
and e as in §3.1, defined as the locus k of poles P of line e with respect to the
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Figure 22. The two hyperbolas through A,B, [C], [D] tangent to e

A

e

B

S'

H
c

P
S

k

Figure 23. The eleven points conic of a, b, [C], [D] and line e

conics c passing through A,B, [C], [D] (their pencil shown in §2.3). This conic
intersects e precisely at the points S, S′ (see Figure 23).

Fixing A,B, [C], [D] the lines e for which there are solutions are those defining
non-separating segments EF,GH , where E = (BC, e), F = (AD, e), G =

A
B

G E F H
e

O

Figure 24. Directions for which exist solutions to (4P21T )

(AC, e), H = (BD, e) (see Figure 24). These are all lines except those, which
separate points A,B and their parallels from O = (AG,BH) fall outside the
angular domain AOB.

4. Three points and two tangents

4.1. Conic by three points and two tangents (3P2T ). Construct a conic passing
through three points A,B,C and tangent to two lines d, e. The construction can
be reduced to that of a conic passing through five points (§2.1) by locating the
points of tangency G,H of the two tangents. This can be done by finding the two
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Figure 25. Conic through A,B,C, tangent to d, e

intersection points A′, C ′ of line GH respectively with the known lines BC and
AB. The key fact here is, that in all cases of existence of solutions, there is a cevian
triangle A′B′C ′ with respect to ABC, with corresponding tripolar A′′B′′C ′′, such
that the contact points of each one of the requested conics are the intersections of
lines e, d with some side of this triangle or its tripolar ([11], [23], [15]). In Figure
25, for example, appears one of the requested conics, tangent to d, e, respectively,

A

B

C

A'

A''

B''
B'

d
e

C''

C'

Figure 26. The four conics through A,B,C, tangent to d, e

at the points G,H , which are on the side A′C ′ of a certain cevian triangle of ABC.
The conic is led to pass through the five points A,B,C,G and H . Analogously are
constructed three other conics. The determination of the cevian triangle A′B′C ′
is done again through the construct of common harmonics. For example, points
B′, B′′ are the common harmonics of the point pairs (AC,B1B2). These represent
the fixed points of an involution, defined, by Desargues’ theorem ([17, p. 204]), on
line AC, by the intersections with members of the pencil D of all conics, which
are tangent to d, e respectively at G,H (seen in §10.1). Regarding the existence,
there are four solutions in the case none of the lines d, e passes through the interior
of the triangle ABC (see Figure 26), or both of them intersect the interior of the
same couple of sides of this triangle. In all other cases there are no solutions.

An intuitive way to answer, why four, offers Figure 27, displaying a cone and a
plane ε on which the cone is projected. Plane ε is the one containing the lines e, d
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Figure 27. Spacial interpretation of the four solutions

intersecting at O. Plane ε′ is parallel to ε from an arbitrary point O′ projecting or-
thogonally to O. The circular cone is constructed so that the parallels d′, e′ from O′
are generators and its axis is contained in ε′. The lines orthogonal to ε at the three
points A,B,C intersect the cone respectively at pairs of points (A′, A′′), (B′, B′′),
(C ′, C ′′). The plane through (A′, B′, C ′) intersects the cone along a conic, which
projects to one of the conics solving the construction problem. The same is true
with the triples of points on the conic (A′′, B′, C ′), (A′, B′′, C ′), (A′, B′, C ′′).
They define respectively, a plane, a conic on the cone, and its projection on ε,
representing a solution of the construction problem. The other possible triples of
points (e.g such as the triple (A′′, B′′, C ′)), because of the reflective symmetry of
the cone with respect to the plane ε′, deliver conics on the cone, which are reflec-
tions of the previous four (e.g. (A′′, B′′, C ′) is symmetric to (A′, B′, C ′′)), hence
by the projection falling onto the same four solutions of the construction problem.

Remark. To handle this, most interesting case and rich in structure of our construc-
tions, one could consider the set of conics passing through three points A,B,C

A

B
C

d

Figure 28. The set of conics through A,B,C tangent to line d

and tangent to one line d, as seen in Figure 28, and attempt to find the members
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of this set satisfying the fifth condition of tangency with line e. Unfortunately
this set of conics is not a pencil, and Desargues’ theorem does not apply to it
to produce the solutions as usual. The same is true for the set of conics passing

d

e

B

A

Figure 29. The set of conics through A,B tangent to lines d, e

through two points A,B and tangent to two lines d, e seen in Figure 29. This set
of conics admits also a spacial interpretation, as the set of projections of intersec-
tions of a cone with all planes passing through points X,Y on the cone, where
X ∈ {A′, A′′}, Y ∈ {B′, B′′}, the points of the two sets projecting respectively on
A and B.

4.2. Parabola by three points and a tangent (3P2T1). Construct a conic passing
through three points A,B,C and tangent to line d and the line at infinity, thus a
parabola. For this, projectively equivalent to the previous, case, the process of de-

A

B

C

A'

A'' C''

C'd B'

B''

Figure 30. Parabola through A,B,C, tangent to d

termination of the cevian triangle and the tripolar, used there, is even simpler, since
line e is now at infinity. The segments A′A′′, B′B′′, C ′C ′′ of common harmonics,
determined on each side of ABC, are now bisected by the tangent d and the chords
of contact points with lines d, e are parallel to the axes of the parabolas (see Figure
30). Figure 31 displays all four parabolas passing through A,B,C and tangent to
line d. There are four solutions if line d does not intersect the interior of triangle
ABC and no solution if it does.
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Figure 31. The four parabolas through A,B,C, tangent to d

4.3. Conic by 2 points, 1 infinity, 2 tangents (3P12T ). Construct a conic passing
through points A,B, [C] and tangent to lines d, e. Triangle ABC is infinite with
two sides parallel to the direction [C]. Points (C ′, C ′′) are the common harmonics
of (A,B) and of the pair of intersections of AB with lines d, e. Analogously are
defined the pairs of points (B′, B′′) on AC and (A′, A′′) on BC. A′B′C ′ is a
cevian triangle of ABC and points A′′, B′′, C ′′ are on the corresponding tripolar.

[C]

A

B
C'

C''

e

d
A'

A''

B''

B'

P

Figure 32. Two (of the four) hyperbolas through A,B, [C] and tangent to lines a, b

Each one of the requested conics passes through A,B,C and is tangent to d, e
at their intersection points with one side of the cevian triangle or the tripolar. In
Figure 32 only two, out of the four, conics are shown. Additional points on the
conics can be found by taking harmonic conjugates with respect to the polar of
P = (d, e). The construction of conics can be also completed by using the remark
in (3P2T )2 of §10.1. In general the conics are hyperbolas with one asymptotic
direction parallel to [C]. Fixing A,B and d, e , there are four directions [C] for
which the corresponding conic is a parabola. These are determined in (2P3T1) of
§5.2. There are four solutions if the lines d, e either do not intersect the interior of
ABC or they intersect the interior of the same pair of sides of this triangle.
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4.4. Hyperbola 1 point 2 asymptotics 2 tangents (3P22T ). Construct a conic, pass-
ing through three points A, [B], [C] and tangent to two lines d, e. This is a hyper-
bola with asymptotic directions [B], [C]. There are again four solutions determined

A

d
(1)

(2)

(3)

(4)

[B]

[C]

eB'

C'

[A']

Figure 33. Hyperbola through A, [B], [C] and tangent to lines d, e

by the sides and corresponding tripolar of a cevian triangle A′B′C ′ of ABC. The
triangle ABC has one side-line at infinity. The corresponding cevian triangle is
determined as in §4.1, but now one of its vertices is at infinity. The four chords
joining contact points of the same conic with lines d, e shown in Figure 33 are
denoted by (1), (2), (3), (4). The conic touching d, e at the endpoints of chord (1)
is drawn. There are four solutions if the lines d, e do not intersect the interior of
ABC or both intersect the interior of the same couple of sides of the triangle. In
all other cases there are no solutions.

5. Two points and three tangents

5.1. Conic by two points and three tangents (2P3T ). Construct a conic passing
through two points D,E and tangent to three lines a, b, c. The structure of the
solution rests upon the dual theorem of Desargues ([17, p. 215], [9, p. 51], [19, p.
229]) and can be described as follows ([4, p. 58], [11], [23]). The three lines in
general positions define a triangle ABC (A opposite to a etc.) and the two given
points D,E determine a third point F , with the following properties. A,B,C, F
define a projective base ([2, p. 95, I]) and in the coordinates with respect to this
base the quadratic transformation ([21, p. 127])

f : (x, y, z) �→
(
1

x
,
1

y
,
1

z

)
, maps f(D) = E.

There are four conics with the prescribed properties (see Figure 34). Each one
of them is tangent to the three sides of the triangle ABC and to two additional
lines. The pairs of additional lines corresponding to the four conics are (FD,FE),
(F1D,F1E), (F2D,F2E), (F3D,F3E), where F1, F2, F3 the harmonic associates
([24, p. 100]) of F . Figure 35 shows the domains for which there are solutions for
the (2P3T ) problem. The two points D,E must lie, both, in the domain with the
same label. Otherwise there are no solutions.



A gallery of conics by five elements 315

A

B CA'

B'
C'

b

a

c D
E

F

F3

F2

Figure 34. The four conics tangent to a, b, c and passing through D,E

(I)

(II)

(II)

(III)

(III)(IV)

(IV)E

D

Figure 35. Domains of existence of 2P3T conics

This case is the dual of the previous one and is reducible to that by taking poles
and polars with respect to a fixed conic. For example, taking poles and polars with
respect to the conic k with perspector F ([24, p. 115]), for each conic c tangent to
the sides of ABC and passing through D,E, we obtain a conic c′ passing through
the vertices of the cevian A′B′C ′ of F and tangent to d, e, which are the polars
of D,E with respect to k (see Figure 36). By this polarity ([22, p. 263, I]) the
tangents tD, tE to c at D,E map to the contact points D1, E1 of c′ with lines d, e
and the intersection point F = (tD, tE) maps to line f = D1E1.

Using a polarity, as before, we could reduce the cases to the half; but it is not
the purpose of the present review to produce a least number of pictures.
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Figure 36. Reduction to the dual by the polarity with respect to k

Remark. In this case, as noticed also in the previous one, some difficulty in han-
dling the construction lies on the fact that the set of conics tangent to a, b, c and
passing through D is not a proper pencil of conics (see Figure 37). This set of con-

a
b

c
D

C

A

B

Figure 37. Conics tangent to a, b, c, passing through D

ics admits a spacial interpretation, as in §4.1, representing the conics as projections
of intersections of a cone with planes. The cone is constructed as in that section,
and the planes intersecting the cone are defined by pairs (X,α) of points and lines.
Point X ∈ {D′, D′′}, the two points of the cone being those which project on D.
Line α is a tangent to the conic defined on the cone by the plane orthogonal to the
plane ε of b, c and intersecting it along line a.

5.2. Parabola by 2 points, 2 tangents (2P3T1). Construct a conic passing through
two points A,B and tangent to two lines c, d and the line at infinity, thus, a
parabola. Figure 38 shows the process of determination of the point F and its
harmonic associates F1, F2, F3 stepping on the previous section. Points B1, B2 are
the common harmonics of the point-pairs (A′, B′) and (G, [d]), where A′, B′ are
the parallel to c projections of A,B on d and G = (c, d). Analogously are defined
on c the common harmonics C1, C2 of two similar point-pairs on c. Point F is the
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Figure 38. Searching for parabolas through A,B and tangent to c, d

intersection of the parallels from B1, C1 respectively to c, d. Figure 39 shows the
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Figure 39. The four parabolas through A,B and tangent to c, d

four parabolas solving the problem. Each of them is tangent to the two given lines
c, d and the pair of lines FiA,FiB, where Fi are either F or one of its harmonic
conjugates (with respect to the triangle with infinite sides G[c][d]). There are four
solutions if points A,B are in the same or opposite angular domains of lines c, d.
Otherwise there are no solutions.

Remark. When line FF3 passes through the middle M of AB, the two correspond-
ing parabolas, tangent respectively to the line-pairs (FA,FB), (F3A,F3B), are
homothetic with respect to G and solve problem (3P12T1) of §9.3, line FF3 being
then parallel to the axis of the two parabolas and also being harmonic conjugate of
AB with respect to lines (c, d).

5.3. Conic by 1 point, 1 infinity, 3 tangents (2P13T ). Construct a conic passing
through two points A, [B] and tangent to three lines c, d, e. The construction can
be done by adapting the one of §5.1. By that method, we first find the cevians of
A,B with respect to the triangle A′B′C ′, whose sides are c, d, e. Then we find the
common harmonics A0, A1 on line c of the point-pair consisting of the traces of
the cevians from A,B and (B′, C ′) . Analogously are defined points B0, B1 on d
and C0, C1 on e (see Figure 40). The six points thus determined define a cevian
triangle with perspector F and the corresponding tripolar. Then we define the three
harmonic associates F1, F2, F3 of F . Each one of the requested conics is tangent
to the three lines c, d, e and also tangent to the two lines FiA,FiB, joining some
of the points Fi with A and B. There are four solutions if A is on the exterior of
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Figure 40. The four conics tangent to c, d, e passing through A, [B]

the triangle A′B′C ′ and in the angular domain containing the parallel to [B] from
a vertex. Otherwise there are no solutions. The conics are in general hyperbolas.
Fixing the lines c, d, e and point A, there are two directions [B] for which the conics
are parabolas. This is handled in (1P4T1) of §6.2.

5.4. Hyperbola by 2 asymptotics and 3 tangents (2P23T ). Construct a conic pass-
ing through two points [A], [B] and tangent to three lines a, b, c. This is a hyper-
bola with asymptotic directions [A], [B] and tangent to three lines. Proceeding as in

DD2

D1

a

b

c

A3

A1B1

B3

B2

C'
B'

B''

A'A''

[A]

[B]

A0

C0 B0

Figure 41. Cevian triangle and perspector in the case (2P23T )

§5.1, we draw parallels to those directions from each vertex of the triangle A0B0C0

with side-lines a, b, c. These parallels define on each side two points A1, B1 on
a, A2, B2 on b etc. The common harmonics (A′, A′′) of point pairs (A1, B1) and
(C0, B0) and the corresponding common harmonics for the other sides, define the
cevian triangle A′B′C ′, its perspector D and the corresponding harmonic asso-
ciates D1, D2, D3 (see Figure 41). Each of the requested hyperbolas is constructed
as a conic tangent to the three lines a, b, c plus the two lines joining Di to the points
at infinity A,B, i.e. the parallels from Di to [A] and [B] (see Figure 42). Given
the directions of lines a, b, c, there are four solutions if drawing parallels to these
directions and to [A], [B], later are not separated by the first. Otherwise there are
no solutions.
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Figure 42. The four hyperbolas tangent to a, b, c with two given asymptotic directions

6. One point and four tangents

6.1. Conic by 1 point and 4 tangents (1P4T ). Construct a conic tangent to four
given lines a, b, c, d and passing through a given point A. One way to the con-
struction is to reduce the problem to its dual (4P1T ) of §3.1. In fact, if IJK is

a
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d

A
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D
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F1

F2

I
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K
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A2

A3

K2

K1
I1

I2

Figure 43. The two conics tangent to a, b, c, d, passing through A

the diagonal triangle of the complete quadrilateral whose sides are a, b, c, d (see
Figure 43), then the harmonic associates A1, A2, A3 of A with respect to IJK are
also points of the conic. Thus, one can apply the recipe of §3.1 by taking these four
points and one of the four given lines.

Another way to define the conics is by using Desargues’ theorem in its dual form
([4, p. 57]) in order to locate a fifth tangent to the conic, namely the one passing
through A. In fact, according to that theorem, the tangents from an arbitrary point
A to the conics of the one-parameter pencil of conics D, which are tangent to
four lines a, b, c, d, define an involution on the pencil A∗ of all lines passing
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through that point. The tangents to the members of that pencil, which pass through
A are the fixed elements of this involution. By considering the intersection of
each line through A with line a, we represent this involution by a corresponding
involution of points of a. The fixed elements of the involution in A∗ correspond

a

b
c

d

A

B E

D

C

B'

E'

F1 F2

Figure 44. The two conics tangent to a, b, c, d, passing through A

to the fixed points of the corresponding involution on a. It is easy to see that two
particular pairs of points in involution on a are the pairs (B,B′) and (E,E′), where
B = (b, a), E = (d, a), B′ = (AD, a), E′ = (AC, a). The common harmonics
F1, F2 of these two pairs define the two requested tangents, which in turn define
the two conics (see Figure 44).

ab

c
d

(1)

(2)

(3)

(4)

(5)

Figure 45. The five domains of existence of solutions

There are two solutions if point A is in one of the five domains (1)− (5) shown
in Figure 45. Otherwise there are no solutions. The reason for this is, as is visible in
the figure, that the pencil D of conics tangent to four given lines a, b, c, d does not
cover all connected domains defined by the four lines ([2, p. 200, II]). Noticable
in the figure is also the fact that for every point in these five domains there are two
conics of the pencil passing through the point.
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A third method to construct the requested conics is to use the dual of the eleven
points conic of §3.1, which is the eleven tangents conic, defined by four lines a, b,
c, d and a point A ([1, p. 97]). This conic is the envelope k of the polars of A with
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k
c1

t1
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t2

Figure 46. The two conics tangent to a, b, c, d, passing through A

respect to all conics tangent to the four given lines. This conic is tangent to the 3
sides of the diagonal triangle RST of the quadrilateral of the four lines. It is also
tangent to the 6 polars of A with respect to all line-pairs of the quadrilateral, and is
also tangent to the two tangents t1, t2 to the requested conics at A (see Figure 46).
Conic k can be constructed by the methods of §7.1 and then t1, t2 can be found
by drawing the tangents to k from A. The two requested conics can be defined by
applying again the methods of the next section and determining the conic tangent
to five lines a, b, c, d, ti, (i = 1, 2).

6.2. Parabola by 1 point, 3 tangents (1P4T1). Construct a conic tangent to the
line at infinity, i.e. a parabola, and also tangent to three lines a, b, c and passing
through a point E. Any of the methods of the previous section can be modified

a
b

c
E

E'
E''

F1

F2

A

C

B

Figure 47. Parabolas tangent to a, b, c, passing through E

to produce the requested parabolas. For example, applying the second method,
we draw first parallels to b, c through E intersecting a at E′, E′′ (see Figure 47).
The pairs of lines (EE′, EB) and (EE′′, EC) through E are related with respect
to the involuetion defined by Desargues’ theorem. They are tangents from E to
degenerate members of the pencil of parabolas tangent to four lines three of which
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are a, b, c. The common harmonics F1, F2 of these pairs define the tangents at E
of the requested parabolas passing through E. There are two solutions if point E
lies in one angular domain containing the triangle ABC but outside of the triangle.
Otherwise there are no solutions.

E
b

b'

b''

aa'a'' c

c'

c''

F1

F2

k

Figure 48. The pencil of parabolas tangent to a, b, c

An alternative solution is obtained by using the nine tangents conic of the three
lines a, b, c, the line at infinity e and the point E. This is the conic k, de-
fined as envelope of all polars of E with respect to the members of the pencil
of parabolas tangent to the three lines a, b, c (see Figure 48). Conic k is tan-
gent to a′, a′′, b′, b′′, c′, c′′, where a′, a′′ are parallel to a, respectively, from point
A = (b, c) and the symmetric Ea of E with respect to a, and the other lines are
defined analogously. The tangents to the requested parabolas at E are the two
tangents from E to k.

6.3. Conic, 1 infinity, 4 tangents (1P14T ). Construct a conic tangent to four lines
a, b, c, d and passing through a point at infinity [E]. Again a solution results
by adapting any of the methods of section §6.1. For example, to adapt the sec-

[E]

B B' CC'

A
D

a

b

c

d

F1
F2

Figure 49. The two conics tangent to a, b, c, d, passing through [E]

ond method to the present configuration, define the points B′, C ′ on b, to be the
projections of D,A parallel to [E] (see Figure 49). Points F1, F2 are the com-
mon harmonics of pairs (B,B′), (C ′, C), and the parallels EF1, EF2 define the
tangents at E of the requested conics, which are constructed from five tangents.
Fixing lines a, b, c, d, there are two solutions when the parallel to [E] from B



A gallery of conics by five elements 323

falls inside the angle CAB or the parallel from D falls inside the complement of
ADC. Otherwise there are no solutions. The above construction assumes that the
lines through F1, F2 are ordinary and as a consequence the conics are hyperbolas.
If the conic is tangent to the line at infinity, thus a parabola, then [E] is uniquely
determined from the lines a, b, c, d. This is handled in (0P5T1) of §7.2.

7. Five tangents

7.1. Conic by five tangents (0P5T ). Construct a conic tangent to five lines a, b,
c, d, e. A first solution is to reduce the construction to its dual of a conic through
five points, as in §2.1. For this, use Brianchon’s theorem to find the contact points
with the sides ([19, p. 225]). In fact, the diagonals BD,CE of the pentagon of the

A
B

C D

E

F

O

Figure 50. Conic through five tangents, find the contact points

given lines intersect at a point O (see Figure 50), which lies also on the line joining
the remaining vertex of the pentagon A to the contact point F of the opposite side.
Thus F is constructible from the data. Analogously are found the other contact
points with the sides of the pentagon. Using again the theorem of Brianchon in
its general form for hexagons circumscribed to a conic, one can construct arbitrary
many other tangents to the conic. In fact, take a point F on side AB and define
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C D
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O

Figure 51. Conic through five tangents, draw arbitrary many tangents FG

the intersection point O of FD and AC (see Figure 51). By Brianchon’s theorem
the diagonal GE will pass also through O. Hence the position of G can be found
by intersecting BC with OE. Thus, moving F on line AB and determining G on
BC by the above procedure, we can find arbitrary many tangents FG to the conic.
There is always a unique solution.

An image of the pencil of conics tangent to four lines, related to this problem, is
contained in §6.1.
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7.2. Parabola by four tangents (0P5T1). Construct a conic tangent to the line at
infinity, i.e. a parabola, tangent to four given lines a, b, c, d. The case is projectively
equivalent to the previous one and the method used there can be adapted to solve
the problem. For this, apply Brianchon’s theorem to the pentagon ABCDE, which

A

E

B

[D]

[C](EC,BD)

(AD,EC)
(BE,AD)

(BD,AC)

C'

B'

(AC,BE)
D'

E'

FG

[A']

Figure 52. The contact points of the tangent parabola

now has points C,D at infinity (see Figure 52). The contact points of the sides op-
posite to the vertices are denoted correspondingly A′, B′, C ′, D′, E′. Point A′ is at
infinity, and determines the axis of the parabola. By Brianchon’s theorem, line AA′
passes through the intersection (EC,BD), which is constructible from the data.
Analogously are constructible the intersections (AD,EC, (BE,AD), (CA,BE),
(DB,CA). Join these points correspondingly with the vertices B,C,D,E to find
B′, C ′, D′, E′ through their intersections with the opposite sides of the pentagon.
To the four points on the parabola a fifth one G can be defined by taking the middle
F of D′E′ and the middle G of FB. Thus the parabola can be constructed as a
conic passing through the five points B′, C ′, D′, E′, G ([2, II, p. 212]).

Another way to solve the problem, is through the properties of the created
parabola related to the Miquel circles of the quadrilateral of the four given lines
([12, p. 83]). These are the circumcircles of the four triangles formed by the four
given lines. A theorem of Miquel asserts that all four circles pass through the same
point F (see Figure 53). A theorem of Steiner ([17, p. 161]) completes then the
construction, by showing that this point F is the focus of the parabola, while the
directrix carries all four orthocenters of the aforementioned triangles ([19, p. 70]).
Thus, in order to construct the parabola, it suffices to take the circumcircles and
the orthocenters of two such triangles and define F and their orthocenters H1, H2

([12, p.45], [14, p. 100, II]). The parabola then is constructed from its focus and
the directrix H1H2. There is always a unique solution.

8. Four points one tangent one coincidence

8.1. Conic by three points and one tangent-at (4P1T )1. Construct a conic passing
through four points A, B, C, D and tangent to a line e at D. In this case it is easy
to find a fifth point on the conic and reduce the construction to that of (5P0T ) in
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Figure 53. The classical construction of the parabola tangent to four lines
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Figure 54. A fifth point A′ of the conic through A,B,C tangent to e at D

§2.1. In fact, take I = (BC, e), I ′ = I(B,C). Then line I ′D is the polar of I (see
Figure 54). If J = (I ′D,AI), then A′ = A(I, J) is a point on the conic. There is
always a unique solution.

Noticeable in the figure is point K = (DA′, AI ′). It is a fixed point on line AI ′,
since the cross ratio (A,K, I ′, I ′′) = (A,A′, J, I) = −1. Hence points D,A′, and
through them, the various conics passing through A,B,C and tangent to e, are de-
fined by turning a line about K and considering its intersections with the fixed lines
e and IA. Figure 55 shows the structure resulting by making the same construc-
tion with respect to the other sides of ABC. In this point E is the tripolar of line
e and KA,KB,KC are its harmonic associates with respect to ABC. Each point
D ∈ e defines three other points of the conic passing through A,B,C and tangent
to e at D. These points are A′ = (DKA,KBKC), B

′ = (DKB,KCKA), C
′ =

(DKC ,KAKB). It is easily seen that points KA,KB,KC are the harmonic asso-
ciates of D with respect to A′B′C ′.

8.2. Parabola by three points and axis-direction (4P11T1). Construct a conic tan-
gent to the line at infinity, hence a parabola, passing through four points A,B,C, [D].
The last point, at infinity, defines the direction of the axis of the parabola. The con-
struction is carried out by locating two more points B′′, C ′′ on the parabola and
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Figure 55. Conic through A,B,C tangent to e at D. Three additional points A′, B′, C′
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Figure 56. Parabola through A,B,C and given axis-direction [D]

passing a conic through A,B,C,B′′, C ′′ (see Figure 56). The construction of the
additional points is the same with that of the previous section.

[D]A

B

C

Figure 57. The pencil of conics through A,B,C, [D]

The pencil of conics involved is a specialization of the one in §1.1, resulting
from it by sending D at infinity (see Figure 57). The construction shows that in
this pencil, all members except one are hyperbolas with one asymptotic direction
[D]. The one exceptional member is the requested parabola.

8.3. Conic by 2 points, 1 at infinity, 1 tangent-at (4P11T )1. Construct a conic
passing through four points A,B,C, [D] and tangent to a line e at C. Additional
points on the conic can be found as in §8.1. In Figure 58 points L,K are two such
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Figure 58. Conic through A,B, [D] tangent to e at C

additional points. They are constructed as conjugates of B and D after construct-
ing the polars CF of G = (e,AB) and CH of I = (e,AL). There is always one
solution, which, in general, is a hyperbola. The pencil involved is the one of conics
through A,B,C, [D], seen in §8.2. Line e can be considered to turn about point C,
defining in each of the obtained locations a corresponding member of that pencil.
There is a single line through C, for which the corresponding conic is a parabola
with axis [D]. In all other cases the conic is a hyperbola with an asymptotic direc-
tion [D].

Fixing A,B,C, e, and varying [D] we obtain, in general, hyperbolas. There are,
though, two special directions [D], determined in terms of A,B,C, e, for which
the resulting conic is a parabola. This is handled in (3P2T1)1 of §9.2.

8.4. Hyperbola by 3 points, 1 asymptote (4P11T )i. Construct a conic passing
through four points A,B,C, [D] and tangent to a line e at [D] ∈ e. This is equiv-
alent with the construction of a hyperbola passing through the points A,B,C and

e

[D]

A

C

B
B' C1

C2

B2

Figure 59. Hyperbola through A,B,C and given asymptote d

having the asymptote line e. Adapting the method of §8.1, we can find two ad-
ditional points B′, C ′ and construct the requested conic as a (5PT0) conic. For
example, to define B′, take successively C1 = (AC, e), C2 = C1(A,C). The par-
allel to e from C2 is the polar of C1. Take then the intersection B2 of that line with
BC1 and B′ = B(C1, B2), which is a point on the conic. Analogously is defined
point C ′. There is always one solution. The pencil of conics involved is the one
shown in (4P11T1) of 8.2. A line parallel to [D] determines a unique member of
the pencil having this line as an asymptote.
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8.5. Hyperbola by 1 point 2 asymptotics 1 tangent at (4P21T )1. Construct a conic
passing through four points A,B, [C], [D] and tangent to a line e at B ∈ e. The
conic is a hyperbola with given asymptotic directions [C], [D], passing through a
point A and tangent at a point B to a given line e. In this case, as we did in §8.1,

A

B

e
[D]

[C]A1

A0

A2

A3

Figure 60. Hyperbola through A,B, [C], [D] tangent to e � B

we can find additional points on the conic. For this let A0 be the intersection point
with e of the parallel to [D] through A. The symmetric A1 of A0 with respect to A
defines line BA1 which is the polar of A0. The parallel to [C] from A0 intersects
A1B at A2 and the middle A3 of A0A2 is on the conic. Repeating the construction
with A3 in place of A and continuing this way, we can construct arbitrary many
points on the conic. There is always one solution.

8.6. Hyperbola by 2 points 1 asymptote 1 asymptotic (4P21T )i. Construct a conic
passing through four points A,B, [C], [D] and tangent to a line e at [D]. The
requested conic is a hyperbola passing through two points A,B having one as-
ymptotic direction [C] and an asymptote e � [D]. By a well known property of
the hyperbola ([4, p. 42]), the segments AA′, BB′ intercepted by the asymptotes
on the secant AB are equal, hence, knowing AA′, we locate B′ on AB and given
the direction of the other asymptote [C] we determine it completely and find its

A
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A'

B'
O

e

[C]

[D]

B''

A''

Figure 61. Hyperbola through A,B, [C], [D] and asymptote e � [D]

intersection point O with the given asymptote e, which is the center of the hyper-
bola (see Figure 61). Two additional points A′′, B′′ are immediately constructed,
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by taking the symmetrics of A,B with respect to O. Arbitrarily many points on
the conic can be then constructed by the method of the previous section. There is
always a unique solution.

9. Three points two tangents one coincidence

9.1. Conic by 2 points, 1 tangent, 1 tangent-at (3P2T )1. Construct a conic pass-
ing through three points A,B,C and tangent to two lines d � A, e. Using again
the power of Desargues’ theorem, we find first the contact points of the requested

A

d

e

E

C

A'' A'F G H

B

Figure 62. The two conics through A,B,C, tangent to e and also to d at A

conics with line e. These are the common harmonics A′, A′′ of the point-pairs
(E,F ), (G,H), where F = (d, e), E = (e,BC), G = (e,AB), H = (e,AC)
(see Figure 62). Note that these pairs are defined as intersections of e with two de-
generate members of the pencil D of conics tangent to d at A and passing through
B,C. The first pair is the intersection with the degenerate conic of two lines d ·BC
and the second with the degenerate conic of the two lines AB ·AC. After locating
the contact point, a fifth point on the conic can be obtained by using the polar of F ,
which is AA′ or AA′′ and taking the conjugate of B or C. There are no solutions if
only one of the lines d, e separates points B,C. Otherwise there are two solutions.
Figure 63 displays a pencil D of conics tangent to line d at a fixed point A and

A
C

Bd

Figure 63. The pencil of conics tangent to d at A, passing through B,C

passing through two points B,C. It is visible there that from every point of the
plane passes a unique member of the pencil and that for every line of the plane not
separating B,C there are two members tangent to that line ([2, II, p. 193]).
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Figure 64. The two conics through A,B,C, tangent to e and also to d at A

For an alternative method, as in §3.1, we consider the poles P of line e with respect
to all members c of D. Their locus is the eleven points conic k intersecting the line
e at the contact points A′, A′′ of the requested conics (see Figure 64).

9.2. Parabola by 2 points, 1 tangent-at (3P2T1)1. Construct a conic passing through
three points A,B,C, tangent to line d at A and tangent to the line at infinity e, thus
a parabola. The involution on e, induced by its intersections with the members of

A

B

C

F

A'd

A''

Figure 65. The two parabolas through B,C, tangent to d at A

the pencil D of conics tangent to d at A and passing through B,C, induces an in-
volution on the pencil A∗ of lines through A and, through the intersections of these
lines with d, induces also an involution on d. Two, related by this involution point-
pairs on d are (B,C) and (F, [BC]), where F = (BC, d) and [BC] the point at
infinity of BC. The common harmonics A′, A′′ of these two pairs define, by join-
ing them with A, the directions of the axes of the parabolas (they pass from the
contact point at infinity) (see Figure 65). Two additional points on each parabola
can be defined by projecting B,C parallel to d on the parallel to the corresponding
axis through A and doubling the resulting segments. There are two solutions if the
line d does not intersect the interior of segment BC and no solution if it does.
A different way to think about this problem is the following (see Figure 66). All
conics c tangent to line d at A and passing through B,C have their centers on
a conic k, passing through A and D = (d,BC) and also through the middles
P,Q,R of segments AB,AC,BC ([19, p. 299]). This is the eleven points conic
of D with respect to the line at infinity. If this conic is a hyperbola, then its points
at infinity are the centers of the two requested parabolas. To find the parabolas in
this case draw from the middle Q of AC parallels C ′Q,C ′′Q to the asymptotes
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Figure 66. The two parabolas through B,C, tangent to d at A

intersecting d ad C ′, C ′′ respectively. One of the requested parabolas is tangent to
lines C ′A,C ′C at A,C correspondingly and passes through B. This is the case
(3P2T )2 of §10.1. Analogously can be constructed the other parabola, starting
with C ′′ instead of C ′. Figure 67 shows the pencil of all conics passing through
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Figure 67. The pencil of conics tangent to d at A and passing through B,C

B,C and tangent to d at A, but having B,C on both sides of d. All conics are
hyperbolas and the conic k of their centers is an ellipse. This is the reason of
non-existence of solutions in this case.

9.3. Parabola by 2 points, 1 tangent, axis-direction (3P12T1). Construct a conic
passing through two points A,B, [C], tangent to line d and also tangent to the line
at infinity e, hence a parabola. The point at infinity [C] determines the direction of

[C]

d
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B

D'

D

E
X

X'

Figure 68. The two parabolas through A,B, tangent to d and axis parallel to [C]
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the parabola’s axis. By Desargues’ theorem, the pencil D of all parabolas passing
through A,B, [C], i.e. passing through A,B and having axis direction [C], define
through their intersection points X,X ′ with line d an involution. The fixed points
D,D′ of this involution are contact points of the requested parabolas. There are
two obvious, degenerate, parabolas passing through A,B, [C] defining two pairs
of points in involution. One pair consists of the intersections (X,X ′) with d of
the two parallels to [C] from A and B (see Figure 68). The other pair consists of
(E, [d]), defined by line AB and the line at infinity, where E = (AB, d). The
fixed points D,D′ of the involution are the common harmonics of these point-
pairs. Once the contact points D,D′ are known, the requested parabolas are easily
constructible by the method of §10.2. If A,B are on the same side of a then there
are two solutions, otherwise there is no solution.

[C]

d

A

B

D'

D

E

d'

e
O

c

Figure 69. Parabolas through A,B, tangent to d and axis parallel to [C]

Another computational solution of the problem results by using the homothety
relating the two parabolas. In fact, the intersection point O of d with the parallel
c to [C] from the middle of AB is the center of a homothety, mapping one of the
parabolas to the other. The other common tangent d′ to the two parabolas from
O, can be constructed from the given data, since it is the harmonic conjugate of
d with respect to the line pair (c, e), where e is the parallel to AB from O. The
computations are straightforward and I omit them. See the remark in (2P3T1) of
§5.2, which relates that problem to the present one.
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Figure 70. Hyperbola through A,B, asymptote d and tangent to e
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9.4. Hyperbola by 2 points, 1 tangent, 1 asymptote (3P12T )i. Construct a conic
passing through points A,B, [C] and tangent to line d at [C] and to line e. Thus,
d is an asymptote and the conic is a hyperbola. The hyperbolas touch line e at
D,D′, which are the common harmonics of pairs of points (E,F ), (G,H), with
E = (e,AB), F = (d, e), G = (AC, e), H = (BC, e) (see Figure 70). Additional
points can be found by considering conjugate points with respect to the polar of F .
There are two hyperbolas, if A,B are in one and the same angular domain out of
the four defined by lines d, e, or they lie on opposite angular domains. Otherwise
there are no solutions. Figure 71 shows the pencil D of hyperbolas through A,B

A

B

d

e
F

k

Figure 71. The pencil of hyperbolas through A,B with asymptote d

with one asymptote line d. It shows also a line e, for which there are no tangent
members of the pencil. Conic k is the locus of poles of the line d with respect to
the members of the pencil (the eleven points conic of D with respect to e). It is a
hyperbola with one asymptote parallel to d, passing through F = (d,AB).

9.5. Hyperbola by 2 asymptotics, 1 tangent-at (3P22T )1. Construct a conic pass-
ing through three points A, [B], [C], tangent to d � A and tangent also to line e.
The conic is a hyperbola with asymptotic directions [B], [C]. In analogy to the

d
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[B]

G

H
F

e
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Figure 72. The two hyperbolas through A, [B], [C], tangent to d at A and to line e

method of §9.1, project first A on e parallel to [B], [C] to find respectively points
G,H . The contact points A′, A′′ of the conics with line e are the common har-
monics A′, A′′ of the point-pairs (G,H) and (F, [e]), where F = (d, e). Once the
two contact points of lines d, e are known, the methods of (4P21T )1 in §8.5 can
be used to complete the construction. There are two solutions if the parallels to
[B], [C] from F fall in the same angular domain of lines (d, e). Otherwise there
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Figure 73. The pencil of hyperbolas with asyptotics [B], [C] tangent to d at A

are no solutions. Figure 73 shows the pencil D of conics tangent to d at A and as-
ymptotic directions [B], [C]. Shown is also the hyperbola k, defined as the locus of
poles of a fixed line e with respect to the members of the pencil (the eleven points
conic of D and e). The intersection points A′, A′′ of k with e are the contact points
of requested conics with line e.

9.6. Conic by 1 asymptote 1 asymptotic 1 point 1 tangent (3P22T )i. Construct a
conic passing through three points A, [B], [C], tangent to d � [B] and tangent to
e. This is a hyperbola with an asymptote d, an asymptotic direction [C], passing
through point A and tangent to line e. The following construction method is a
variation of the one given in §9.1. The pencil of conics D, used in the theorem of
Desargues, consists now of all conics tangent to d at [B] and passing through A and
[C]. This is the pencil of hyperbolas having their centers on line d, one asymptote

A

[C]

d

Figure 74. The pencil of hyperbolas through A, asymptote d, asymptotic [C]

d, the other parallel to [C] and passing through A (see Figure 74). Two degenerate
members of this pencil consist of (a) the product of line AB and the line at infinity,
(b) the product of lines d · AC. These two members define on e respectively the
point-pairs (G, [e]), (E,F ), where G = (e,AB), E = (e,AC) and F = (d, e).
The contact points D,D′ of the requested hyperbolas with line e are the common
harmonics of these two point-pairs. They lie on d symmetrically with respect to
G (see Figure 75). Once the contact points with line e are known, the methods of
(3P2T )2 in §10.1 can be applied to complete the construction of the conics. Fixing
the positions of A, d, e, there are two solutions if [C] defines E = (AC, e), such
that EF is not separated by G. Otherwise there are no solutions. The points D,D′
can be found also as intersections of line e with the conic k which is the locus of
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Figure 75. The two hyperbolas through A, asymptote d, asymptotic [C], tangent e

poles of e with respect to the members of the pencil (the eleven points conic). In
this case k is a hyperbola with one asymptote parallel to d.

10. Three points two tangents two coincidences

10.1. Conic by two tangents-at and a point (3P2T )2. Construct a conic passing
through three points A,B,C and tangent to two lines d, e at A ∈ d and B ∈ e.
In this case it is easy to find additional points and pass the conic through five
points. Line AB is the polar of F = (d, e) and the conjugate D = C(F, J), where
J = (FC,AB) is on the conic. The conjugate I = J(A,B) is the pole of FC and
more points can be constructed as shown in Figure 75. The problem has always
one solution.

d

e
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CD

I

F

G

H E
J

Figure 76. Conic through C, tangent to d, e at A,B

Remark. In this case the simplicity of the analytic solution is worth noticing. Rep-
resenting lines d, e with two equations respectively f = 0, g = 0, and line AB
with h = 0, the general equation of the conic passing through A,B and tangent
there to lines d, e is given by a quadratic equation ([18, p. 234])

j = λ · (f · g) + μ · h2 = 0,

where λ and μ are arbitrary constants. The requirement for the conic to pass
through C, namely, j(C) = 0, determines, the constants λ, μ up to a multiplica-
tive factor, and through these determines a unique conic. The conics resulting for
variable λ, μ build the bitangent pencil ([2, II, p. 187]), used also in §4.1.
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Figure 77. A bitangent pencil of conics κ(d · e) + λ(g2)

Figure 77 presents such a kind of (type IV ) pencil. All conics of the pencil are
tangent to the lines d, e at their intersections with line g. The two conics c1 = d · e
and c2 = g2 are degenerate members of the pencil.

10.2. Parabola by 1 point, 1 tangent-at, axis-direction (3P12T1)1. Construct a
conic passing through three points A,B, [C], tangent to line d at A and also tan-
gent to the line at infinity e. Thus, the conic is a parabola with axis parallel to the
direction [C]. Project B parallel to d on AC to M and extend BM to the double
to find B′, which is on the parabola (this map B �→ B′ is the affine reflection with
axis AC and conjugate direction d ([5, p. 203])). Define N to be the symmetric

[C]

A

d B

B'

M
N

Figure 78. Parabola through A,B, tangent to d and axis parallel to [C]

of M with respect to A (see Figure 78). Since BN is tangent at B to the parabola,
we can construct arbitrary many points of the parabola by repeating this procedure.
There is always one solution.

10.3. Hyperbola 1 point 1 tangent-at 1 asymptote (3P12T )1i. Construct a conic
passing through points A,B, [C] and tangent to lines d � [C], e � B. This is a
hyperbola with asymptote d. A slight variation of the solution in §10.1, leading
to the determination of the other asymptote and the center of the hyperbola, is as
follows. Let F = (d, e). Then the symmetric F1 of F with respect to B is on
the other asymptote d′ of the hyperbola (see Figure 79). Draw also the parallel to
d from A intersecting e at D. The symmetric D′ of D with respect to A defines
the polar BD′ of D. The intersection point E = (BD′, d) is the pol of line AD.
Hence AE is the tangent at A and the symmetric E1 of E with respect to A defines
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Figure 79. Hyperbola through A, asymptote d and tangent to e at B

a point on the other asymptote d′ of the hyperbola. Thus, the other asymptote d′
can be constructed to pass from the two points F1, E1. The intersection point O of
the two asymptotes defines the center of the hyperbola and by the symmetry with
respect to O we can find more points on the conic. An additional point on the conic
is also A′, constructed by first drawing the parallel from B to d. This parallel is the
polar of F and if F ′ is its intersection point with AF , then the harmonic conjugate
of A with respect to F, F ′ is on the conic. There is always one solution.

10.4. Hyperbola from two asymptotes and a point (3P22T )2i. Construct of a conic
passing through three points A, [B], [C] and tangent to two lines d � B, e � C.
This is a hyperbola with asymptotes the lines d, e passing through a point A. This

d e
A A'

D D'
OD''

D1

A0

A1

Figure 80. Hyperbola with given asymptotes d, e and passing through A

can be done by determining the successive symmetrics D,D′, A′ of A with re-
spect to the axes and a fifth additional point D′′ easily constructible from the data
(see Figure 80). In fact, draw a parallel to the asymptote d intersecting the other
asymptote in A0. The polar of A0 is the line parallel to e, such that its intersection
A1 with AA0 is the symmetric of A0 with respect to A. Consider the intersection
D1 of that polar with line A0D

′. The harmonic conjugate D′′ of D′ with respect
to (A0, D1) is on the conic and coincides with the middle of D1D

′. Note the A0

divides D′D′′ in ratio (2 : 1). There is always a unique solution.

11. Two points three tangents one coincidence

11.1. Conic by 1 point, 1 tangent-at, 2 tangents (2P3T )1. Construct a conic pass-
ing through two points D,E and tangent to three lines a � D, b, c. The solution
can be given by applying a special case of the dual of Desargues’ theorem, referred
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to also as Plücker’s theorem ([4, p. 25], [2, p. 202, II]). This case concerns the
one-parameter pencil D of all conics, which are tangent to line a at D and also
tangent to two lines b, c (see Figure 84 below in this section). If E is another, arbi-

D
a

c

b

XX'

E

E1
E2C B

Figure 81. Conics tangent a, b, c, passing through D ∈ a,E

trary, but fixed point, not lying on any of a, b, c, Desargues’ theorem asserts, that
the pairs of tangents to these conics from E define an involution on the pencil E∗
of lines through E. By intersecting the rays of this pencil with a line, such as a, we
can represent this involution through one which permutes the points of that line.
Thus, the tangents from E to an arbitrary conic of that pencil intersect line a at a
pair of points (E1, E2), related by this involution (see Figure 81). The requested
conics are those, which pass through E and their tangents at E pass through the
fixed points X,X ′ of this involution. In order to construct these points it suffices
to find two easily constructible pairs of points in involution on a. One such pair
consists of the points C = (a, b), B = (a, c). Another pair is found by drawing

D

a

b

XX'

E

P

F

H BC

a'

G
c

Figure 82. A particular conic tangent to a, b, c, passing through D ∈ a

the parallel a′ to a through E, intersecting c at F (see Figure 82). The second
tangent from E to the conic inscribed in the quadrilateral with sides a′, b, a, c and
passing through D, can be found by applying Brianchon’s theorem to the pentagon
CBFEG. This theorem guarantees that lines DE,CF,BG pass through a com-
mon point P . Thus, P is constructed by intersecting DE with CF and G is found
as the intersection G = (PB, b). In this case the two tangents from E are EG,EF
and consequently H corresponds by the involution to the point at infinity of line
a. It follows that the fixed points X,X ′ of the involution are common harmonics
of pairs (H, [a]) and (B,C). Once the tangents at E are found, each one of the
two conics can be constructed by locating one more point on it and applying the
recipe of §10.1 using Brianchon’s theorem. There are two solutions if points D,E
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D
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C X
X'
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Figure 83. The two conics tangent to a, b, c, passing through D ∈ a,E

are in the same angular domain defined by lines b, c or they are in opposite angular
domains. In all other cases there are no solutions. This is visible also in Figure 84 ,

D

B

C

a

c

b

Figure 84. A pencil of conics tangent to a, b, c and passing through D ∈ a

which displays a pencil of conics tangent to a, b, c and passing through D ∈ a.
When D is on the exterior of segment BC, then the conics are all located in the
angular domain of b, c containing D and its opposite ([2, II, p. 201]).

An alternative solution of the problem is the following. Consider the trian-
gle with sides a, b, c and the conic k passing through its vertices and tangent to
EB,EC at B,C respectively, which is a construction of the type (3P2T )2 of

DB C

E

A

a

c
b

B'
C'

FF1

F2k

Figure 85. The locus of F = (B′C,C′B) for B′C′ passing through E

§10.1 (see Figure 85). It is easy to see, using Maclaurin’s theorem ([1, p. 77], [18,
p. 230]), that this conic is the geometric locus of points F , which are intersections
of diagonals of quadrilaterals B′BCC ′ with B′C ′ passing through E. From Brian-
chon’s theorem follows that if B′C ′ were the tangent at E to our requested conic,
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then the diagonals B′C,C ′B would intersect on line DE. Thus, their intersection
point F must coincide with the intersection points F1, F2 of line DE with the conic
k. Having these two points, the construction of the two tangents at E is immediate
and the rest, of the construction of conics, goes as before.

11.2. Parabola by 1 point, 1 tangent, 1 tangent-at (2P3T1)1. Construct a conic
passing through two points A,B, tangent to two lines c � A, d and tangent also to
the line at infinity, thus a parabola. By Desargues’ theorem, applied as in §11.1,

c A

B

P

MN

Figure 86. Parabolas through A,B and tangent to c at A

the tangents at B to the members of the pencil D (see Figure 86) of all conics
tangent to c at A, passing through B and also tangent to d and the line at infinity
(thus parabolas), define an involution on the pencil B∗ of all lines through B. The

d

c

A

D

B1 B2

C1

C2

B

Figure 87. Parabolas through A,B and tangent to c � A, d

tangents at B to the requested parabolas are the fixed elements of this involution.
We can represent this involution through points on the line d, by corresponding
to each ray through B its intersection point with d. There are two particular de-
generate parabolas of this pencil, coinciding with the lines parallel to c, d through
B. The parallel to d defines the pair of corresponding points (B2, [d]), where
B2 = (AB, d). The parallel to c defines the pair of corresponding points (B1, D),
where B1 = (B[c], d) and D = (c, d). The rays through B representing the fixed
elements of the involution in B∗ are BC1, BC2, where C1, C2 are the common
harmonics of the pairs (B1, D), (B2, [d]). Once the tangents through B are lo-
cated, the parabolas are constructed as in the next section. There are two solutions
if points A,B are not separated by line d and no solution if they are.
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11.3. Parabola by 1 point, 2 tangents, axis-direction (2P13T1). Construct a conic
passing through two points A, [B], tangent to two lines c, d and also tangent to the
line at infinity, thus a parabola. Point [B] determines the direction of the axis of

K

K'

NC

[B]

e c

d

Figure 88. A pencil of parabolas tangent to c, d and axis direction [B]

the parabola. The pencil of parabolas tangent to c, d with axis direction [B] can be
easily constructed by taking the harmonic conjugate e of CB with respect to c, d.
This is namely the direction of chords bisected by CB, where C = (c, d). Having
that direction, we can define a second point A′ on the requested parabola. This is
the result of the affine reflexion on CB parallel to e (see Figure 88). The rest of
the construction is thus reducible to that of §9.3, which gives either two solutions
or none, if point A is outside of the angular domains determined by c, d, which
contain the parallel CB to the given direction [B].

Another, computational, method to locate the two parabolas could be the one
using the equation of the parabola with respect to the axes e, CB (see Figure 89).

B

A

A'

MC

x

y

c

de
K

Figure 89. The two parabolas through A, tangent to c, d and axis direction [B]

In these axes the equation of the parabola has the form

y = αx2 + β,

and constants α, βare easily determined by the data. In fact, the given point A has
known coordinates (x1, y1) with respect to these axes and the coordinates (x2, y2)
of the contact point K with c satisfy y2 = 2β and y2

x2
= λ, later being a constant

determined by the data. It turns out that α, βsatisfy the two equations

y1 = αx21 + β, and αβ =
λ2

4
,

which determine the same solutions under the same conditions as before.
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11.4. Hyperbola by 1 point, 1 asymptote, 2 tangents (2P13T )i. Construct a conic
passing through two points A, [B], tangent to three lines c, d, e � B. This is a

A

[B]
e

d c

A''

C E

D

P

O
A' B2

B1
F

Figure 90. The two hyperbolas through A with asymptote e and tangent to c, d

hyperbola with an asymptote e. By the method of §11.1, the tangents at A of the
requested conics are determined by the common harmonics B1, B2 of the two pairs
of points (C,E) and (F, [B]), where C = (e, d), E = (e, c), D = (c, d), F =
(AD, e) (see Figure 90). If O is a diagonal point of the quadrilateral formed by the
three tangents c, d, e, AB1, then, by Brianchon’s theorem, the intersection point A′
of d with the parallel to e through O will be the contact point of d with the conic.
The problem reduces then to the construction of the conic tangent at A′ ∈ d,A ∈
AB1 and passing through A, which is (3P2T )2 of §10.1. Analogous properties
hold for the other conic with tangent at A the line AB2. Fixing the lines c, d, there
are two solutions if A, [B] are in the same or opposite angular domains defined by
c, d. Otherwise there are no solutions.

11.5. Hyperbola 1 asymptote 1 asymptotic 2 tangents (2P23T )i. Construct a conic
passing through two points [A], [B] and tangent to three lines: a at [A], b, c. This is
a hyperbola with one asymptote a, the other asymptotic direction [B] and two other
tangents b, c. The problem is projectively equivalent to (2P3T )1 of §11.1. Here

[B]

b

c

C D

E

A1
A2

A0C2

C1

Y2

Y1

X2
X1

F2

F1

a

Figure 91. The two hyperbolas with asymptote a, asymptotic [B] and tangents b, c
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again the recipe is essentially the one of §11.1, with some simplifications allowing
for a faster determination of the conics. In Figure 91, displaying the conics, A0 =
(a,EB) and points A1, A2 are the common harmonics of pairs (C,D), (A0, [A]).
Parallels to [B] define the two quadrilaterals DA2C2E,DA1C1E. Each quadri-
lateral determines a conic tangent to its sides. In this case the contact points of
the conics with the sides of the quadrilateral are easily determined. In fact, by the
well known property of segments intercepted between asymptotes follows, that the
contact points X1, X2 are respectively the middles of DF2, CC1 and the contact
points Y1, Y2 are the middles of DF1, CC2. There are two solutions if, drawing
parallels from a point to b, c and to [B], later does not fall between the two first.
Otherwise there are no solutions.

12. Two points three tangents two coincidences

12.1. Conic by two tangents-at and a tangent (2P3T )2. Construct a conic tangent
to three lines a, b, c, passing through two points A,B with A ∈ a and B ∈ b.
In this case the contact point C of the requested conic with the third line is easily

A

B

a

b
c

C

C' B'

A'

P

Figure 92. Conic tangent to a, b, c at A ∈ a,B ∈ b

constructed, since all lines joininig the vertices of the triangle formed by the three
lines to the opposite contact point pass through the same point P , the perspector
of the conic with respect to that triangle A′B′C ′ (see Figure 92). There is always
a unique solution.

12.2. Parabola by 2 tangents-at (2P3T1)2. Construct a conic passing through two
points A,B, tangent to two lines c � A, d � B and also tangent to the line at
infinity, thus a parabola. If point C = (a, b), taking the middle D of AB and

c

d

A

B

C

D

M

N

P

I
J

K
L

Figure 93. Parabola through A,B and tangent to a � A, b � B

the middle M of CD we construct a new point on the parabola. Analogously
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are obtained new points K,L from the middles of MA,MB respectively. The
parabola is led as a conic through the five points A,B,M,K,L. There is always
one solution identified with one first-kind Artzt parabola of triangle ABC ([13, p.
518]). Triangle ABC is referred by times as an Archimedes triangle ([8, p. 239]).

12.3. Parabola 1 tangent 1 tangent-at, axis-direction (2P13T1)1. Construct a conic
passing through two points A, [B], tangent to two lines c � A, d and tangent also
to the line at infinity, thus, a parabola with axis parallel to [B]. One solution is to

c

d

A

A'

[B]

M
C

FH

G

Figure 94. The parabola tangent to d and c at A and axis direction [B]

construct, as in the previous section, the direction GH of chords of the parabola,
which are bisected by CB. Then, find the point A′ on the parabola, such that AA′
is parallel to GH and bisected by CB. Point A′ is the contact point of the parabola
with d and the construction reduces to that of (2P3T1)2 of §12.2. There is always
a unique solution.

cF

e

D

d
E

C

BP

Figure 95. Hyperbola with asymptote c tangent to d � B and tangent to e

12.4. Hyperbola 1 asymptote 1 tangent 1 tangent-at (2P13T )1i. Construct a conic
passing through two points [A], B and tangent to three lines c � A, d � B, e. This
is a hyperbola with one asymptote c, tangent to d at B and also tangent to e. The
triangle CDE with sides the tangents c, d, e is known and the perspector P of the
conic, tangent to the sides of this triangle, can be found (see Figure 95). In fact,
draw from C = (d, e) parallel to the asymptote c and find its intersection P with
BD, where D = (c, e). If E = (c, d), then line PE passes through the contact
point F of e with the conic. The case, as the one of §12.1, has always a unique
solution.
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Figure 96. Hyperbola with asymptotes a, b and tangent c

12.5. Hyperbola 2 asymptotes 1 tangent (2P23T )2i. Construct a conic passing
through two points [A], [B] and tangent to three lines a � A, b � B, c. This is a hy-
perbola with given asymptotes a, b and a tangent c. This is an easy case, since the
contact point of the tangent c is the middle F of DE, where D = (a, c), E = (b, c).
The parallel to a from F is the polar of D and the parallel to the other asymptote
b from D intersects the first parallel at G. The middle H of DG is a point of the
hyperbola. An analogous point can be constructed starting with E. Taking the
symmetrics with respect to the center O = (a, b) of the hyperbola we have enough
points to define the conic through five points. There is always a unique solution.

13. One point four tangents one coincidence

13.1. Conic by one tangent-at and three tangents (1P4T )1. Construct a conic tan-
gent to a given line a at a given point D and also tangent to three other lines b, c, e.
The basic underlying structure results from Brianchon’s theorem. In fact, consider
the intersection point O of the diagonals of the quadrilateral BCGF defined by the
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Figure 97. Conic tangent to a, b, c, e, passing through D ∈ a

four lines (see Figure 97). According to Brianchon’s theorem, the lines joining op-
posite contact points DE,MN intersect also at O. Thus, point E is constructible
from the given data. Further, if K = (b, c),M = (a, e), I = (AM,DE), the
line MN of the other two contact points defines point J = (MN,AM), such
that (KLIJ) = −1. This allows the determination of J and from this the points
M,N , by intersecting line JO with the sides b, c. The problem is thus reducible
to (4P1T )1 of §8.1 and has one solution. The pencil involved here is the one of
conics tangent to a at D and also tangent to b, c, appearing also in (2P3T )1 of
§11.1.
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Remark. Besides quadrangle BCGF , the complete quadrilateral, defined by lines
a, b, c, e, contains also the quadrangles AGMB, whose diagonals intersect at L
and CMFA, whose diagonals intersect at K. It is also easily seen, that the con-
tact points N,E,M are the harmonic associates of D with respect to the diagonal
triangle OLK of the complete quadrilateral. Thus the definition of N,E,M from
D, does not depend on which one of the three quadrangles (and corresponding
intersection of diagonals O,K or L) we select to work with.

13.2. Parabola by 1 tangent-at, 2 tangents (1P4T1)1. Construct a conic tangent
to the line at infinity, i.e. a parabola, tangent to line a at E ∈ a and tangent to two
lines b, c. Here the construction is somewhat simpler than that of the previous case,

O
E

A ab

c

F

G

M
B

C

b'

Figure 98. Parabola tangent to a at E and tangent to b, c

because of the nice properties of parabolas. In fact, let O be the intersection of the
parallels from B to b and from C to c (see Figure 98). Then the line EO is parallel
to the axis of the parabola. Having the direction of the axis, we can construct more
points on the parabola using the method of (2P13T1) of §11.3. Using this we can
find the direction of the chords bisected by the parallel to the axis from B and
determine the contact point F with line c. Analogously we can find the contact
point G of b, and from these points by similar methods find other arbitrary many
points on the parabola. Alternatively, we can use the fact that points {F,G,O}
are collinear and the line d, carrying them, intersects line BC at the harmonic
conjugate E′ = E(B,C). There is always a unique solution.

13.3. Parabola by axis-direction, 3 tangents (1P14T1). Construct a conic tangent
to the line at infinity, i.e. a parabola, tangent to three lines a, b, c and passing
through [D], i.e. with given axis-direction. This is a case similar to the previous
one. Again we construct the intersection point O of the parallels to b, c from the
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Figure 99. Parabola tangent to a, b, c with given axis-direction
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opposite vertices. The line through O, parallel to the given axis-direction, deter-
mines now on a the contact point E with the parabola. From there the construction
of the other contact points F,G with sides c, b and the completion of the parabola
construction is the one described in the previous section. There is always a unique
solution.

13.4. Hyperbola, 1 asymptote, 3 tangents (1P14T )i. Construct a conic tangent to
line e at its point at infinity [E], i.e. a hyperbola with an asymptote e, and tangent
to three lines a, b, c. In analogy to §13.1 we can find the contact points of the
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Figure 100. Hyperbola tangent to a, b, c with asymptote e

three tangents with the hyperbola. In fact, consider the intersection point P of the
diagonals of quadrilateral FGHI , whose all sides are given and are tangents to the
hyperbola. By Brianchon’s theorem, the line e′ parallel to the asymptote e from
point P will intersect the side a of the quadrilateral at its contact point A with the
hyperbola (see Figure 100). Consider now an arbitrary line h and its intersection
points A′ = (e′, h), I ′ = (IG, h), F ′ = (FH, h). The other chord of contact-
points BC will intersect line h at the harmonic conjugate B′ of A′ with respect
to (I ′, F ′). Thus, B′ is constructible from the given data, and drawing PB′ we
determine the positions B,C of the contact points on the tangents b, c respectively.
Having one asymptote and the contact points on the tangents, we can determine the
other asymptote, the center, and, by symmetry to that center, three more points on
the conic. The method is described already in (3P12T )1i of §10.3. There is always
one solution.
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