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Abstract. In Part I ([2]) the authors introduced solid tangent sweeps and solid
tangent clusters produced by sweeping a planar region S tangentially around
cylinders. This paper extends [2] by sweeping S not only along cylinders but
also around more general surfaces, cones for example. Interesting families of
tangentially swept solids of equal height and equal volume are constructed by
varying the cylinder or the planar shape S. For most families in this paper the
solid tangent cluster is a classical solid whose volume is equal to that of each
member of the family. We treat many examples including familiar quadric solids
such as ellipsoids, paraboloids, and hyperboloids, as well as examples obtained
by puncturing one type of quadric solid by another, all of whose volumes are
obtained with the extended method of sweeping tangents. Surprising properties
of their centroids are also derived.

1. Tangential sweeping around a general cylinder

Figure 1 recalls the concepts of solid tangent sweep and solid tangent cluster
introduced in [2]. Start with a plane region S between two graphs in the same
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Figure 1. (a) Volume of a solid tangent sweep is equal to that of its solid
tangent cluster. (b) Region S lies between two ordinate sets. (c) Top
view of a horizontal cross section.

half-plane. To be specific, assume S consists of all points (x, y) satisfying the
inequalities

f(x) ≤ y ≤ g(x), a ≤ x ≤ b

where f and g are nonnegative functions related by the inequality 0 ≤ f(x) ≤ g(x)
for all x in an interval [a, b]. In Figure 1a, the x axis is oriented vertically, and S
is in the upper half-plane having the x axis as one edge. If we rotate S around
the x axis we obtain a solid of revolution swept by region S, as indicated in the
right portion of Figure 1a. More generally, place the x axis along the generator
of a general cylinder (not necessarily circular or closed) and, keeping the upper
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half-plane tangent to the cylinder, move it along the cylinder. Then S generates
a tangentially swept solid we call a solid tangent sweep. The corresponding solid
tangent cluster is that obtained by rotating S around the x axis.

When the smaller function f defining S is identically zero, the swept solid is
called a bracelet. Examples are shown in Figures 2 and 3. Clearly, by Figure 1b,
any swept solid can be produced by removing one bracelet from another. In [2] we
proved:

Theorem 1. The volume of the solid tangent sweep does not depend on the profile
of the cylinder, so it is equal to the volume of the solid tangent cluster, a portion of
a solid of revolution.

The proof used the fact that the shaded band and annulus in Figure 1c have equal
areas, together with the slicing principle: Two solids have equal volumes if their
horizontal cross sections taken at any height have equal areas.

Families of solid tangent sweeps with the same solid tangent cluster. For a given
region S we can allow the cylinder to vary and thus obtain a family of solid tangent
sweeps, all with the same solid tangent cluster. Thus, from Theorem 1 we obtain
the following corollary:

Corollary 1. Each member of the family has the same volume as their common
solid tangent cluster.

Moreover, from such a family one can obtain infinitely many new families with
the same property by slicing the solids of the given family by two horizontal planes
at given distance apart. Not only are the volumes of the slices equal because of the
slicing principle, but we also have the following corollary:

Corollary 2. For any such family of slices, the altitudes of the volume centroids
above a fixed horizontal base plane are also equal.

This property of centroids is another consequence of the slicing principle (see
[3; p.150]). In Section 6 we use Corollary 2 to locate centroids of many solids.

2. CONIC SECTIONS SWEEPING AROUND CIRCULAR CYLINDERS

In Figure 2a, S is a semielliptical disk, and the swept solid is an ellipsoidal
bracelet whose volume is that of its solid cluster, an ellipsoid of revolution. In

(b)(a)

similar ellipsoids
shifted paraboloids

Figure 2. (a) All ellipsoidal bracelets have the same volume as the ellip-
soid. (b) All paraboloidal bracelets have the same volume as the parabo-
loid of revolution.
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Figure 2b, S is half a parabolic segment, and the solid sweep is a paraboloidal
bracelet whose volume is that of its solid cluster, part of a paraboloid of revolution.

If Figure 3a, S is a double right triangle sweeping around a circular cylinder.
The swept solid is a hyperboloidal bracelet of one sheet whose volume is that of its
solid cluster, a portion of a solid cone. In Figure 3b, S is a portion of a hyperbolic
segment sweeping around a circular cylinder. The solid sweep is a hyperboloidal
bracelet of two sheets (only one of which is shown), whose volume is that of its
solid cluster, a portion of a hyperboloid of revolution.

(b)(a)

same asymptotes same asymptotes

Figure 3. (a) Double triangle sweeps a hyperboloidal bracelet with the
same volume as its solid cluster, a portion of a solid cone with the same
volume. (b) Hyperbolic segment sweeps a hyperboloidal bracelet. The
solid cluster is part of a hyperboloid of revolution of the same volume.

These results are summarized in Figure 4, where E and P denote the ellipsoid and
paraboloid in Figure 2, H1 is a hyperboloid of one sheet in Figure 3a (a degenerate
case shown), and H2 is a hyperboloid of two sheets in Figure 3b. Vertical sections
of a circular cylinder, C, are also included, regarded as swept by a degenerate conic.

E P H1 H2
C

Figure 4. Special sweeping regions S bounded by conics.

Because the tangent sweeps in the foregoing examples are taken around a circu-
lar cylinder, the same solids can be obtained by using this cylinder to drill a hole
through the axis of a solid bounded by a quadric surface. The volume of each
drilled solid depends only on the height of the cylindrical hole and not on its ra-
dius. When the radius is zero, the drilled solid is the solid cluster, a quadric surface
of revolution. A classical case is when the solid being drilled is a sphere, a result
usually treated by integral calculus. All spherical bracelets of a given height have
equal volume.
Solids sweeps and clusters whose outer lateral boundary is a quadric surface. When
a conic is rotated around one of its axes of symmetry, the solid of revolution has
a lateral surface that is a portion of a quadric surface. Rotation around a different
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axis will not produce a quadric surface. For example, rotating a circle around a line
not through its center produces a torus, which is a quartic surface. When a conic is
swept tangentially around a circular cylinder, with the symmetry axis of the conic
lying on a generator of the cylinder, the solid tangent sweep and its solid cluster
have outer lateral surfaces that are similar quadric surfaces.

CCCE CP CH2CH1

ECEE EP EH2EH1
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Figure 5. Table summarizing sweeping regions S bounded by two conics.

Solids swept by combinations of conics. Now we consider solids swept by regions S
in Figure 1 where both functions f and g that define S have portions of conic sec-
tions as their graphs. The table in Figure 5 shows various possible combinations.
The examples in Figure 4 are used as the top row and leftmost column of the table,
with E meaning ellipse, P meaning parabola, H1 a hyperbola whose rotation about
its axis produces a hyperboloid of one sheet, H2 a hyperbola whose rotation about
its axis produces a hyperboloid of two sheets, and C meaning circular cylinder.
Conics in the top row form the outer boundary of S and those in the left column
form the inner boundary. The dashed vertical line in each entry of the table is a
common axis of symmetry of the two conics.

The first diagonal entry in the table shows two possible cases when both bound-
aries are ellipses, one when the ellipses intersect, and another when they do not
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intersect. The second diagonal entry shows two possible cases when both bound-
aries are parabolas, one when they open in the same direction, the other when they
open in opposite direction, with fP indicating ‘flipped’ parabola. Similarly, the
next-to-last diagonal entry shows two possible cases of two hyperbolas of type H2

opening in the same or opposite direction, with fH2 indicating ‘flipped’ hyperbola.
When a region S from the table is rotated about the common fixed vertical axis

of symmetry it generates a solid of revolution, a solid cluster, whose inner and
outer surfaces are quadric surfaces. When the axis of symmetry is allowed to move
tangentially around a circular cylinder, S generates a solid tangent sweep having
the solid of revolution as its solid tangent cluster. Because the cylinder is circular,
the inner and outer surfaces of each tangent sweep are quadric surfaces, similar
to the corresponding surfaces of the cluster. The sweep and cluster have equal
volumes, and cross sections produced by any horizontal plane have equal areas. As
the radius of the cylinder changes, a family of solid tangent sweeps is produced,
each with the same volume as the solid tangent cluster.
Dual solids. Figure 6a shows a family of spherical bracelets of a given height. They
are of type CE in Figure 5, where ellipse E is a circle. Figure 6b shows a family
of circular cylinders of given height from which inscribed spherical portions have
been removed. They are of type EC in Figure 5, where again E is a circle. When
swept solids of type CE and EC have the same height, we call them dual solids.
The solid cluster in Figure 6a is a sphere, and its dual in Figure 6b is a cylinder
with a spherical hole. Archimedes showed that the volume of a sphere is 2/3 that

(a) (b)

Figure 6. (a) Family of spherical bracelets of given height. (b) Family of
solids dual to those in (a).

of its smallest circumscribing cylinder (a result inscribed on his tombstone), so the
volume of the solid cluster in Figure 6b is exactly half that of the solid cluster in
Figure 6a. The same ratio holds for any two dual members of these families. The
term dual is used more generally to refer to two solids of the same height swept
by regions S in Figure 5 that are symmetrically located with respect to the main

(b)(a)

similar ellipsoids
shifted paraboloids

Figure 7. Family dual (a) to ellipsoidal bracelets and (b) to paraboloidal bracelets.
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diagonal. In dual solids the types of outer and inner surfaces are interchanged.
Figure 7a shows two members of a family of ellipsoidal bracelets dual to those in
Figure 2a, and Figure 7b displays two members of a family dual to the paraboloidal
bracelets in Figure 2b.

Figures 8a and 8b show two members of families of hyperboloidal bracelets dual
to those in Figure 3a and 3b, respectively. In a given family of dual bracelets the
volume of each punctured cylinder depends only on the height of the cylinder and
not on its radius.

(a)

same asymptotes same asymptotes

(b)

Figure 8. Family dual to hyperboloidal bracelets in Figure 3. (a)
Bracelets of one sheet. (b) Bracelets of two sheets.

In all the foregoing examples, the volume of a swept solid plus that of its dual
solid is equal to the volume of the circumscribing cylinder.
Solids swept by combinations of regions bounded by conics. Theorem 1 can be ex-
tended to include any solid swept by a suitable combination of regions S of the type
shown in Figure 1. Figure 9 indicates several examples obtained by combining re-
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Figure 9. (a) Sweeping regions S bounded by two parabolas. (b) Strips
with line 1 as upper boundary. (c) Strips with lines 2 and 3 as upper
boundaries.

gions of type PfP in Figure 5, a parabola and an intersecting flipped parabola. There
are seven numbered horizontal lines in Figure 9a. The even numbered lines, shown
darker, are fixed. Line 2 passes through the vertex of one parabola, line 4 passes
through the intersection points of the two parabolas, and line 6 passes through the
vertex of the flipped parabola. They divide the plane into four horizontal strips,
and the odd numbered lines lie somewhere inside these strips as indicated. As the
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odd numbered lines vary in position they generate different types of plane regions
between the two parabolas that can be swept around the common axis of symmetry.
Samples are shown in Figures 9b and 9c. Images symmetric with respect to line 4
are not shown.

3. TANGENTIAL SWEEPING BY VARIABLE PLANE REGIONS ALONG SPE-
CIAL CYLINDERS

In Figure 1, solid sweeps and their clusters were generated by sweeping a fixed
plane region S tangentially along a general cylinder. This section treats special
cylinders and includes cases in which S is allowed to vary. Further examples of
variable sweeping regions are given in Section 8.
Tractrix as profile of the cylinder. Figure 10 shows a tractrix cylinder, whose pro-
file is a tractrix, with various regions swept tangentially along the same tractrix
cylinder. In Figure 10a a rectangle of fixed size is swept tangentially along a trac-

tractrix sweep by rectangle cluster

semicylinder

cluster

semiellipsoid

tractrix sweep by semielliptic disk

(a) (b)

Figure 10. Tangentially swept solids generated by (a) a rectangle, and (b)
a semielliptical disk moving tangentially along a tractrix cylinder.

trix cylinder; the corresponding solid tangent cluster is part of a circular cylinder.
In Figure 10b a semielliptical disk inscribed in the rectangle of Figure 10a is swept
along the same tractrix cylinder; the corresponding solid tangent cluster is part of
an ellipsoid of revolution. (The ellipsoid in Figure 10b is almost spherical.) Both
solid tangent clusters are familiar solids whose volumes are well known or are eas-
ily calculated. The corresponding tangentially swept solids are not well known,
and integral calculus does not easily yield their volumes. But Theorem 1 does the
job with little effort! The volume of each solid sweep is simply equal to that of its
solid tangent cluster, which is easily calculated.
Exponential as profile of the cylinder. Figure 11 shows two solids swept tangentially
along an exponential cylinder, whose profile is an exponential curve. The solid in

  cluster:
prismatic
wedge

exponential sweep
      by rectangle 

  cluster:
prismatic
wedge(a) (b)

exponential sweep
      by triangle

Figure 11. Solids swept tangentially along an exponential cylinder by (a)
variable rectangle, and (b) variable isosceles triangle.

Figure 11a is swept by a rectangle whose base is of fixed length and whose altitude
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is the length of the tangent segment from the exponential curve to its asymptote.
Because the subtangents of an exponential have constant length, the solid tangent
cluster is a portion of half a rectangular prism. The solid in Figure 11b is swept by
an isosceles triangle inscribed in the tangential rectangle of Figure 11a. Its solid
tangent cluster is a portion of a triangular prism.

The solid in Figure 12a is swept by a semielliptical disk inscribed in the rectan-
gle of Figure 11a. Its solid cluster is part of a cylindrical wedge with a semiellip-
tical base. In Figure 12b the semielliptical disk of Figure 12a is flipped over. The
corresponding solid cluster is the complementary part of the cylindrical wedge in
Figure 12a.

exponential sweep

   cluster:
cylindrical 
wedge

   cluster:
 complem.
cyl. wedge

by variable 
semielliptic
disk 

exponential sweep
by variable flipped
semielliptic
disk 

(a) (b)

Figure 12. Solids swept tangentially along an exponential cylinder by (a)
variable semielliptical disk, and (b) flipped variable semielliptical disk.

Cycloid as profile of the cylinder. In Figure 13a, a solid is swept by a variable rec-
tangle moving tangentially along a cycloidal cylinder, whose profile is a cycloid.
Figure 13b shows the solid swept by an isosceles triangle inscribed in the rectangle
of Figure 13a.

   cycloidal sweep
by variable rectangle

(a) (b)

cluster:
      cylinder

  cluster:
   double
      cone

   cycloidal sweep
by variable triangle

Figure 13. Solids swept tangentially along a cycloidal cylinder by (a)
variable rectangle, and (b) variable isosceles triangle.

The solid in Figure 14a is swept by a variable elliptical disk inscribed in the
rectangle of Figure 13a, and that in Figure 14b is swept by a semielliptical disk
inscribed in the same rectangle.

The foregoing examples show that many infinite families of tangentially swept
solids can be generated by plane regions moving along various cylinders. We have
discussed a few special cases for which the volume of the solid tangent cluster is
known or, as we shall see presently, can be easily determined without using integral
calculus.
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(a) (b)

cluster cluster

 cycloidal sweep by 
variable elliptic disk

     cycloidal sweep by 
variable semielliptic disk

Figure 14. Solids swept tangentially along a cycloidal cylinder by a full
elliptical disk in (a) and a semielliptical disk in (b).

Calculating the volumes of solid clusters. Each solid cluster is a portion of a solid of
revolution. In the examples treated above we can calculate the volume of the solid
cluster directly or by invoking a new comparison lemma that extends Pappus’ rule
on volumes of solids of revolution.

Take a plane region that may change its shape as it rotates about an axis. Let
A(θ) denote the area of the region and let c(θ) denote the distance of its area cen-
troid from the axis when the region has rotated through an angle θ from some initial
position. By Pappus’ rule, the volume ΔV of the solid of revolution generated by
rotating through a small angle Δθ is given by

ΔV = A(θ)c(θ)Δθ.

This implies the following comparison lemma for volumes generated by two plane
regions of areas A1(θ) and A2(θ) that change their shapes in a special way as they
rotate about the same axis:

Comparison Lemma. If at any stage of the rotation the ratio of their areas
A1(θ)/A2(θ) is a constant α, and the ratio of their centroidal distances c1(θ)/c2(θ)
is a constant γ, then the corresponding ratio of their volumes V1(θ)/V2(θ), when
swept through the same angle, is the constant αγ, just as if the regions did not
change their shapes. This ratio does not depend on the shape of the tangential
cylinder.

The comparison lemma allows us to calculate the volumes of the solid clusters
treated in Figures 10 through 14.

In Figure 10b the solid cluster is a portion of an ellipsoid of revolution inscribed
in the circular cylinder in Figure 10a, both rotated through the same angle. In this
case we easily find that α = π/4 and γ = 8/(3π) giving αγ = 2/3 for the ratio of
their volumes, ellipsoid to cylinder. This is the famous 2/3 ratio for the volumes of
a sphere and cylinder found on Archimedes’ tombstone.

In Figure 11b the solid cluster is a portion of half a triangular prism inscribed
in half the rectangular prism in Figure 11a. The two solid clusters are also solids
of revolution for which the comparison lemma can be applied. In this case we find
that α = 1/2 and γ = 2/3, so the ratio of their volumes is αγ = 1/3.

Similarly, we determine the volume of the solid cluster in Figure 12b by com-
paring it with that in Figure 11a. In this case we have α = π/4 and γ = 2(1− 4

3π ),
giving αγ = π

2 − 2
3 . Figures 13 and 14 show four different solids swept along a

cycloidal cylinder. The solid cluster in Figure 13a is a portion of a circular cylin-
der, so its volume is easily calculated. The other three solid clusters are not well
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known solids, but we can determine their volumes in terms of that of the cylindri-
cal cluster in Figure 13a by applying the comparison lemma. Comparing the solid
cluster in Figure 14a with that in Figure 13a we find α = π/4 and γ = 1 giving us
αγ = π/4.
4. TANGENTIAL SWEEPING AROUND A CONE

Instead of generating solids tangentially swept around a cylinder, we replace the
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S

Figure 15. (a) Tangential sweeping by S around a cone. (b) Region S and
its wall projection on the yz plane. (c) Rotation of wall projection in (b)
around the z axis produces the cluster.

cylinder with a cone, as illustrated in Figure 15a. The cone can be quite general,
not necessarily circular, but for the sake of simplicity we consider a right circular
cone with vertex angle 2α, where α < π/2.

Take a region S in the upper half of the xy plane tangent to the cone, with the x
axis matching a generator of the cone. As this plane moves tangentially around the
cone, region S sweeps out a toroid-like solid that we call a conical sweep. We are
interested in determining the volume of the conical sweep.

Each cross section of the sweep cut by a plane perpendicular to the axis of the
cone, which we call the z axis, is part of a planar ring whose area does not depend
on the position of S, which can be near to or far away from the cone’s vertex V .
Consequently the volume of the conical sweep does not depend on the position of
S. For convenience we take the origin of the xy plane to be the vertex V . Figure
15b shows a projection of S on the yz plane, called the wall projection, which
makes an angle α with the x axis (half the vertex angle of the cone). The area of
the wall projection of S is cosα times the area of S. Figure 15c shows the solid of
revolution obtained by rotating the wall projection around the z axis. We call this
solid the cluster of the conical sweep. A plane perpendicular to the z axis cuts both
the conical sweep and its cluster in regions of equal area so, by the slicing principle,
their volumes are equal. This gives the following theorem, with the notation just
introduced.
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Theorem 3. (a) The volume of a conical sweep of S does not depend on the distance
of S from the vertex of the cone.

(b) The volume of a conical sweep is equal to the volume of its cluster.
(c) This common volume is equal to cos α times the volume of the solid of revo-

lution obtained by rotating region S around a fixed axis.

Ellipsoid of revolution. Our first application of Theorem 2 is to an ellipsoid of rev-
olution shown in Figure 16b. When a semielliptical disk is swept tangentially

(a) (b) (c) (d)

c h

r
b

r
H

h
ttt

Figure 16. Finding the volume of an ellipsoid in (a) and (b), and of an
ellipsoidal segment of altitude h < H in (c) and (d).

around a circular cone as in Figure 16a it generates a punctured cylinder, a solid
sweep lying between the cone and its circumscribing cylinder. The volume of this
solid sweep is known to be 2/3 that of the cylinder. By Theorem 2 the volume of
its cluster, the ellipsoid of revolution in Figure 16b, is also 2/3 that of its circum-
scribing cylinder. When the ellipsoid is a sphere this is Archimedes’ tombstone
result.

We shall determine, more generally, the volume V (h) of the ellipsoidal segment
of altitude h in Figure 16d in an alternative way by rotating the shaded triangle
in Figure 16c about the vertical axis and applying Pappus’s theorem. The shaded
triangle of altitude h in Figure 16c sweeps out the upper portion of the punctured
cylinder, which is the same as a portion of the solid sweep swept tangentially by the
corresponding portion of the semielliptical disk in Figure 16a. The tangent cluster
of this portion is the ellipsoidal segment of volume V (h) in Figure 16d.

By Pappus, volume V (h) is the product of the area of the triangle and the dis-
tance its centroid moves in one revolution. The area of the triangle is bh/2 and the
area centroid of the triangle is at distance c = r − b/3 from the axis of rotation,
hence

V (h) = 2π(r − b

3
)
bh

2
=

π

3
(3r − b)bh. (1)

Archimedes [4; On Conoids and Spheroids, Proposition 27] showed that V (h) bears
a simple relation to the volume Vcone of the cone in Figure 17a with the same base
and altitude (altitude h and base radius t, where t is the length of the chord in
Figures 17a and 17b), namely

V (h)

Vcone
=

3H − h

2H − h
, (2)

where H is the length of the vertical semiaxis of the ellipsoid (half the height of
the circumscribing cylinder) in Figure 16d, and h < H .
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(a) (b) (c) (d)
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Figure 17. Proof of Archimedes’s formula (2). In (d), h ≥ H .

A simple proof of (2) can be given by observing that volume Vcone = πt2h/3.
By similar triangles in Figure 17b, we find b/t = t/(2r − b), so t2 = (2r − b)b,
hence

Vcone =
π

3
t2h =

π

3
(2r − b)bh. (3)

Now divide (1) by (3) and use the similarity relation r/b = H/h to obtain (2).
The same type of argument, using Figure 17d, proves (2) when h ≥ H . (When

h is replaced by −h, (2) becomes ratio (6) in [2] for a hyperboloidal segment.)

Paraboloid of revolution. Another result of Archimedes [4; On Conoids and Spheroids,
Props. 21, 22], depicted in Figure 18b, states that the volume of a paraboloidal
solid of revolution is equal to half that of its circumscribing cylinder. We shall
deduce this by applying Theorem 2.

(a) (b)

S S

Figure 18. Tangential sweeping by half a parabolic sector around a cone
produces a solid sweep in (a) whose cluster is a paraboloid of revolution
in (b). The volume of the paraboloid is half that of its circumscribing
cylinder.

Cut the large cone C in Figure 18a by a plane parallel to a generator through a
point midway between the base and vertex of C. We take half the parabolic cross
section as region S and and form a conical sweep by rotating S tangentially around
the smaller cone c whose vertex is at the center of the base of the larger cone C.
The corresponding conical cluster is the paraboloid of revolution in Figure 18b.
By Theorem 2, its volume V is equal to that of the conical sweep in Figure 18a.
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This solid sweep is inside the large cone C and outside the small cone c. Thus,
V = 6v(c), where v(c) is the volume of the small cone c. But v(c) is one-third
the volume of the circumscribing cylinder through the base of c, so V is twice
the volume of this cylinder which, in turn, is half that of the larger circumscribing
cylinder in Figure 18b. This proves the result of Archimedes. The same result
follows from (2) by keeping h fixed and allowing H to tend to ∞ so the ellipsoidal
segment becomes paraboloidal.

General persoid of revolution. A torus is the surface of revolution generated by
rotating a circle about an axis in its plane. The curve of intersection of a torus and
a plane parallel to the axis of rotation is called a curve of Perseus, examples of
which include the ovals of Cassini and leminscates of Booth and Bernoulli. Each
such curve of Perseus has an axis of symmetry parallel to the axis of rotation. When
the persoidal region, bounded by a curve of Perseus, is rotated about this axis of
symmetry it generates a solid that we call a persoid of revolution.

In [2] we treated persoids of revolution obtained by rotating persoidal regions
cut from a torus by planes parallel to the axis of the torus. Now we consider more
general persoidal regions obtained by cutting planes that make an angle α < π/2
with the toroidal axis. Examples are shown in Figures 19, 20, and 21.

In Figure 19a the axis of symmetry of the plane cross section S is designated
as the x axis. In Figure 19b the x axis is oriented vertically and S is rotated about
this fixed axis to generate a general persoid of revolution. By Theorem 2c, its

C

(a) (b) (c)

α

α

x x

R

r
cd

β

r
S

Figure 19. (a) Slanted toric section. (b) Its solid of revolution. (c) Dia-
gram for calculating the volume by Pappus’ theorem.

volume V is 1/cos α times the volume of the conical sweep obtained by tangential
sweeping of S around a cone with vertex angle 2α. This cone is shown in Figure
19c together with a cross section of the torus through its axis. The tangential sweep
is the portion of the solid torus outside the cone. This same solid is generated by
rotating the circular segment in Figure 19c about the axis of the cone. By Pappus,
the volume of this solid of revolution is 2πCA, where A is the area of the circular
segment, and C is the centroidal distance of the segment from the axis of rotation.
Hence volume V of the solid of revolution in Figure 19b is given by

V =
2πCA

cosα
. (4)
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Now we show that

V =
4

3
πr3 sin3 β +

πRr2(2β − sin 2β)

cosα
, (5)

where r is the radius of the circle that generates the torus as its center moves around
a circle of radius R, α is half the vertex angle of the cone, and β is half the angle
that subtends the circular segment of radius r. The first term in (5) is 4

3π(r sinβ)
3,

the volume of a spherical bracelet of altitude r sinβ.
Area A of the circular segment, expressed in terms of r and β, is

A = r2(β − sinβ cosβ). (6)

From Figure 19c we find C = c cosα + R, where c is the centroidal distance
of the segment from the center of the circle of radius r. Hence CA/ cosα =
cA+RA/ cosα. But cA = 4

3π(r sinβ)
3 so (4) and (6) yield (5).

Figure 20a shows a vertical axial section of the torus and the end view of three
parallel cutting planes that pass through the hole in the torus making an angle α
with the vertical axis of the torus. They cut three curves of Perseus as indicated.
We wish to find the volumes of each persoid of revolution about its own axis.

1 2 3

1 2 3

Figure 20. Slanted toric sections cut by parallel planes through the hole
of the torus.

According to Theorem 2, this volume is equal to that of the conical sweep divided
by cosα. In each of these example, the conical sweep is the entire solid torus,
whose volume is 2π2r2R, so the volume V of each persoid of revolution is

V =
2π2r2R

cosα
. (7)

An interesting case occurs when the cutting plane is tangent internally to the
inner part of the torus, as in Figure 21a. Here the curve of Perseus consists of
two intersecting circles of radius R as seen from a direction perpendicular to the
cutting plane. In Figure 21a, r = R cosα so (7) gives V = 2π2R2r, which is the
volume of a different torus generated by a circle of radius R rotated around a circle
of radius r.
5. FAMILIES OF CONE-DRILLED SOLIDS OF EQUAL VOLUME

We turn next to examples of families of cone-drilled solids of equal volume
obtained by sweeping simple shapes bounded by portions of conic sections (in-
cluding degenerate conics) along a right circular cone. When the conic is attached
to a generator of the cone along one of its axes of symmetry as in Figure 22, both
the tangent sweep and the tangent cluster are solids bounded by quadric surfaces.
Figure 22a shows a rectangular strip of given width attached tangentially to a right
circular cone. Tangential sweeping produces a portion of a twisted cylinder outside
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(a) (b) (c)
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r
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α Rr

r

Figure 21. (a) Cross section showing cutting plane as a line doubly tan-
gent internally to the inner part of the torus (side view). (b) Inclined view
of the section in (a). (c) Normal view seen from a direction perpendicular
to the cutting plane.

(a) (b) (c) (d) (e)
α

rectangle triangle hyperbola or parabola
ellipsehyperbola

or circle

Figure 22. Regions bounded by conics sweeping tangentially around a cone.

the cone. A family (not shown) of equal height and equal volume is produced by
shifting the rectangle up or down along the generator of the cone.

An interesting family is obtained by varying the vertex angle of the cone. By
slicing all swept solids by parallel horizontal planes at distance H apart we get a
family of slices of equal volume independent of the cone’s vertex angle, as depicted
in Figure 23. If the width of the strip is w, the volume of each slice in this family is
equal to that of a circular cylinder of height H and radius w, or πw2H . In Figure

H

Figure 23. A family of cone-drilled hyperboloids of the same height and
equal volume.

23 the swept solids are symmetric about the vertex of the central cone, but the same
result holds if the tangential sweeping is done at any location relative to the vertex.
The volume of each swept solid is equal to that of the circular cylinder.

One leg of a given right triangle can be attached tangent to a cone anywhere
along a generator as in Figure 22b and rotated to sweep a portion of a twisted
cylinder outside the cone. Varying the position of the right triangle produces a
family of cone-drilled solids (not shown) having the same height and the same
volume, that of the cone obtained by revolution of the vertical wall projection of
the sweeping triangle.
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We can attach a plane region bounded by a portion of a conic section as in Fig-
ures 22c, d and e, to produce more examples of interesting families of cone-drilled
solids. A semielliptical disk will sweep a portion of an ellipsoid, or a paraboloid
or hyperboloid of two sheets, depending on the proportions of the semiaxes of the
ellipse.

(a) (b)

H α α α
α

α

Figure 24. (a) Cone-drilled paraboloids of equal height and equal volume.
(b) Limiting case is a cylinder punctured by a cone.

If the ellipse is represented by a circle in its ceiling projection, then the solid
is paraboloidal, drilled by a cone as in Figure 24. In this case all solids in this
family have volumes equal to that of the ellipsoid obtained by revolution of the
wall projection of the sweeping ellipse. If the lengths a and b of the semiaxes

H

Figure 25. Cone-drilled spheres of equal height and equal volume.

of the ellipse satisfy a/b < sinα, where α is half the vertex angle of the cone,
we obtain a family of cone-drilled similar ellipsoids of revolution. When a = b
the ellipse is a circle attached to a cone along its diameter as in Figure 22e and
we obtain cone-drilled spheres of different sizes (Figure 25), all having the same
height and the same volume. When a/b has a larger value we obtain a family of
cone-drilled hyperboloids of two sheets, all having the same volume if their heights
are equal.

The table in Figure 26 supplements that in Figure 5 by including a cone as a
quadric surface. The first entry, labeled C, shows an axial vertical section of a cone
punctured by a cylinder, and of a cylinder punctured by a cone. The second entry,
labeled E, shows an axial vertical section of an ellipsoid punctured by a cone, and of
a cone punctured by an ellipsoid. The remaining entries have analogous meanings,
with P representing a paraboloid of revolution, H1 a hyperboloid of one sheet, and
H2 one part of a hyperboloid of two sheets.

Combining families of drilled solids of equal height. Figure 27 shows a family of
solids obtained by combining the families in Figure 24 and 25, where each member
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H1 H2PEC

Figure 26. Axial vertical sections of quadric surfaces drilled by cones,
and of cones punctured by quadric surfaces.

of the respective family is drilled by a congruent truncated cone of height H . The
solids in this new family, shown with darker shading, also have the same volume,
the difference of the volumes of those in Figure 24 and 25. That common volume,
in turn, is that of a sphere.

H α α
α α

H

Figure 27. Paraboloidal-drilled spheres of height H and equal volume,
that of a sphere of diameter H .

Similarly, Figure 28 shows a family of solids obtained by combining the families
of the type in Figures 2 and 3 with the same height H . The limiting case in (c) is
a portion of a sphere punctured by a cone, whose volume is that of the ellipsoid in
(d).

H

(a) (b) (c)

H

(d)

Figure 28. Spheres punctured by twisted cylinders of equal height pro-
duce solids of equal volume, that of an ellipsoid.

Special cases previously considered. Two special cases are treated by Polya [6; p.
202], where the volume of a conically and parabolically perforated sphere are ob-
tained using integration. Polya’s examples were extended by Alexanderson and
Klosinski [1], who also used integration to calculate volumes of several solids ob-
tained by rotating the region between two conic sections. They did not consider
arbitrary horizontal slices as we did in Figure 5, but considered only special slices
between common intersection points of the conics, so the entire boundary of each
solid is made up of portions of quadric surfaces. Their examples are summarized in
Figure 29, where now C represents a cone, a cylinder being a special case. Their list
can be extended (without integration) as shown in Figure 30, where hyperboloids
of two sheets H2 are also considered. The notation H2

2 indicates that both sheets
are used. Similar examples were also treated in [5].
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Figure 29. Solids generated by rotating regions between intersections of
two conics.

H C2
H H2 2EH2 PH2
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1 H H 2
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H H1 2

Figure 30. More solids like those in Figure 29 with hyperboloids of two
sheets included.

In each entry of Figures 29 and 30 each conic can be scaled separately and
shifted vertically so that the height of the hole in the punctured solid has a fixed
value. Each entry yields a family of punctured solids having equal height and equal
volume.

Alternative treatment. The equality of volumes for the families in Figures 27 or 28
can be obtained in an alternative manner, as illustrated in Figure 31 in a general
setting. Take any plane region S between two graphs in the same half-plane as
described in Section 2. Rotate this region tangentially along a cone (Figure 31a),
or rotate its wall projection around a cylinder (Figure 31c). We generate a family
of tangentially swept solids of equal volume by translating region S along the
generator of the cone or by varying the radius of the cylinder. The common volume
is that of the cluster in Figure 31b.
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(a) (b) (c)

S

Figure 31. (a) Solid tangential sweep around a cone. (c) Solid tangen-
tial sweep of wall projection of (a) around a cylinder. (b) Solid tangent
cluster of (a) and of (c).

Area balance of axial sections of swept solids. In [2] we showed that any vertical
cross section of a general tangentially swept solid around a circular cylinder is in
area balance with the corresponding vertical cross section of its solid cluster. This
is a consequence of a balance-revolution principle introduced in [3; p. 410]. The
areas of two plane regions are in equilibrium with respect to a balancing axis if,
and only if, the solids of revolution generated by rotating them about the balancing
axis have equal volumes. The same is true when the circular cylinder is replaced
by a right circular cone. In fact, a stronger result holds. Any vertical section of a
tangentially swept solid around a circular cylinder or a right circular cone is in
chord-by-chord balance with the corresponding vertical cross section of its solid
cluster (with respect to the common axis of the cylinder or cone).

(a) (b)

Figure 32. (a) Triangle and semielliptical disk in chord-by-chord balance.
(b) Isosceles triangle and semiparabolic segment in chord-by-chord bal-
ance.

This follows from the fact that each horizontal cross section of the sweep is
a circular ring whose area is equal to the corresponding circular cross section of
the cluster, so by using Pappus we see that the horizontal chords are in balance.
Examples of area balance of axial sections are exhibited by any two members of a
family of solids of revolution generated by any entry in Figure 5. Figure 32a shows
an example of area balance of axial sections of Figures 16a and 16b, a triangle
and a semielliptical disk. Another example is shown in Figure 32b, area balance
of axial sections of Figures 18a and 18b, an isosceles triangle and a semiparabolic
segment. More examples appear in Figures 34 and 36.

6. CENTROIDS OF SOLID SWEEPS AND CLUSTERS

The property of volume centroids described in Corollary 2 of Section 1 also
applies to solid sweeps obtained by sweeping around a cone instead of a cylinder.
The altitudes of the volume centroids of a solid sweep and its solid cluster are
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equal. Now we use this property to locate the volume centroids of several solids of
revolution. The first two are the ellipsoidal and paraboloidal segments of revolution
in Figures 33a and b. Archimedes treated the centroid of a spherical segment (a
special case of an ellipsoidal segment), and of a paraboloid of revolution. The next
two, shown in Figure 34, were not treated by Archimedes. Figure 34a shows the
upper half of a hyperboloid of one sheet, and Figure 34b shows the lower half of a
hyperboloid of two sheets.

Centroids of ellipsoidal segment and paraboloidal segment. For the ellipsoidal seg-
ment of height h shown Figure 33a, z denotes the distance of its volume centroid
from the top. We shall show that

z = h
8H − 3h

4(3H − h)
, (8)

where H is the altitude of a full semiellipsoidal solid. For a spherical segment,
Equation (8) is equivalent to Proposition 9 in [4; Method, p.35]. When h = H the
ellipsoidal segment is half an ellipsoid and (8) gives z = 5

8H.
To prove (8), recall that in Figure 16 we observed that the ellipsoidal segment

is the solid tangent cluster of a solid tangent sweep obtained by rotating a triangle
tangentially around a circular cylinder. By Corollary 2, distance z is equal to that
for the cylinder of altitude h and radius r punctured by an inverted truncated cone
as in Figure 33a, whose volume we denote by VTC, and whose centroidal distance
from the top we denote by zTC. Let V (h) denote the volume of the ellipsoidal
segment. The solid cylinder of radius r and altitude h has centroidal distance h/2
from the top, so by equating moments about the top we find

zV (h) + zTCVTC =
h

2
πr2h. (9)

The term zTCVTC is also the difference of moments of a large cone of altitude H
and radius r, and a smaller cone of altitude H − h and radius r(H − h)/H , which
gives

zTCVTC =
H2

4
π
r2

3
− (

H

4
+

3h

4
)
π

3
(H − h)(

H − h

H
r)2. (10)

From (1) we have V (h) = π
3 (3r − b)bh, where b = hr/H . This becomes V (h) =

π
3 (3H − h)(rh/H)2, which when used in (9) together with (10) leads, after much
algebraic simplification, to (8).

(b)(a)

h/3

h
z

r rr

H

hz z

Figure 33. (a) Centroid of an ellipsoidal segment. (b) Centroid of a
paraboloidal segment.
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We treat next the paraboloidal segment of altitude h in Figure 33b. In this case
the formula for centroidal distance z from its base is very simple:

z =
h

3
, (11)

a result found by Archimedes in [4; Method, Proposition 5]. Figure 18 shows
that the paraboloidal segment is the solid cluster of the tangential sweep, and we
showed earlier that its volume V is six times the volume v of the small inverted
cone of the same altitude in Figure 33b. To prove (11) we note that the solid
tangent sweep in Figure 33b can be obtained by removing two smaller cones, each
of volume v, from the large cone of altitude 2h in Figure 18a. Equating moments
about the base of the configuration in Figure 18a we find

6zv + 2vh = 4vh,

which immediately gives (11).
Note that the centroidal distance h/3 of the paraboloidal segment is exactly

the same as the planar centroidal distance of the isosceles triangle of base r and
altitude h that sweeps out the punctured truncated cone in Figure 33b when rotated
about the axis of the cone. As we will show later in this section, this is not a mere
coincidence, but is a phenomenon shared by solids obtained by rotating planar
regions with an axis of symmetry.

Centroids of hyperboloidal segments. First we treat a hyperboloidal segment of one
sheet cut from the upper half of the unpunctured solid in Figure 3a. The segment
has altitude h, lower circular base of radius r, and upper circular base of radius R,
as shown in Figure 34a. We will show that its centroidal distance Z from the lower
base is given by

Z =
3

4
h
R2 + r2

R2 + 2r2
. (12)

We know that the punctured solid has the same volume and same centroidal dis-
tance from the base as its solid cluster, the cone of altitude h and radius t in Figure
34a.

(a)

h

R

r

t

h
Z

r
H

h

b
(b)

Z Z

3h/4 h

t

Figure 34. Centroid of hyperboloidal segments of (a) one sheet, and (b)
one of two sheets.

Here t2 + r2 = R2. Equating moments of the volume [cone] of the cone plus
the volume [cyl] of the cylindrical hole with that of the volume [cone]+[cyl] of the
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unpunctured hyperboloidal segment, we find
3

4
h[cone] +

1

2
h[cyl] = Z([cone] + [cyl]). (13)

But [cone]= πt2h/3 and [cyl]= πr2h. Use these in (13) and solve for Z to obtain
(12).

For the hyperboloidal segment of two sheets, one of which, of altitude h, is
shown in Figure 34b, the centroidal distance Z from the base is given by

Z =
h

4

4H + h

3H + h
, (14)

where H is the altitude of the small cone in Figure 34b.
To prove (14), we use the fact that the punctured truncated cone in Figure 34b

has the same volume V (h) and same centroidal distance Z from the base as its
solid cluster, the hyperboloidal segment. Volume V (h) is equal to that of the solid
swept by the triangle of base b and altitude h in Figure 34b. By Pappus, we have

V (h) = 2π(r +
b

3
)
bh

2
= πr2(3 +

h

H
)
h2

3H
, (15)

where we have used the similarity relation b/r = h/H . Equating moments of the
configuration in Figure 34b about the base, we have

1

4
(H + h)[Cone] =

1

2
h[cyl] + (h+

1

4
H)[cone] + ZV (h), (16)

where [Cone] denotes the volume of the large cone of radius r + b and altitude
H + h, [cyl] denotes the volume of the cylinder of radius r and altitude H , and
[cone] denotes the volume of the small cone of radius r and altitude H . Now use
the volume formulas

[Cone] =
1

3
π(r+b)2(H+h) =

1

3
πr2(1+

h

H
)2(H+h), [cone] =

1

3
πr2H, [cyl] = πr2h

together with (15) in (16), and solve for Z to get (14) after algebraic simplification.

Special centroidal altitude lemma. Figure 35a shows a right triangular region of al-
titude h rotated to generate a solid cone of the same altitude. The areal centroidal
distance of the triangle above its base is h/3, but the volume centroidal distance
of the cone is h/4 (Figure 35a). Earlier we observed that the volume centroidal
distance h/3 of the paraboloidal segment in Figure 33b is equal to the areal cen-
troidal distance of an isosceles triangle of altitude h that sweeps out the punctured
truncated cone. This surprising result is explained by the following lemma on cen-
troidal altitudes, illustrated in Figure 35b.

Centroidal altitude lemma. The area centroid of any axially symmetric plane
region has the same altitude above any fixed base as the volume centroid of the
solid of revolution swept by the plane region around any axis in that plane disjoint
from the region that is parallel to the axis of symmetry.

The idea of the proof is very simple. Because each horizontal chord of the plane
region has its centroid on the axis of symmetry, during the revolution it sweeps an
area proportional to the chord length. Therefore, the volume centroid of the solid
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c c

Figure 35. (a) Centroid of triangle and cone are different. (b) Centroidal
altitude lemma.

having these areas as horizontal cross sections is at the same altitude as the areal
centroid determined by the chords.

This idea can be converted into a rigorous proof by using integrals to represent
the two centroids. If l(h) denotes the length of the chord at altitude h, the altitudes
of the area centroid and volume centroid are given, respectively, by

area centroid =

∫
l(h)hdh

∫
l(h)dh

, volume centroid =

∫
A(h)hdh

∫
A(h)dh

,

where A(h) denotes the cross sectional area of the solid at altitude h. By Pappus,
A(h) = 2πRl(h), where R is the distance between the two parallel axes. The
constant factor 2πR cancels in the second ratio of integrals, and we see that the
area centroid and volume centroid are at the same altitude.

Now we apply the lemma to the upper half of a torus (Figure 36b) generated by
revolving a semicircular disk of radius r (Figure 36a) around any axis at distance
R ≥ r from its center. According to the lemma, the volume centroid of the semi-
torus is at the same altitude as the area centroid of the semicircular disk, regardless
of R. Figure 36c shows a vertical section of the semitorus by a plane internally
tangent to the torus, the upper half of a persoidal region consisting of two congru-
ent pieces with an axis of symmetry. When one piece is swept tangentially around
a cylinder through the hole of the torus its tangent sweep is the torus itself. When
rotated around its own axis of symmetry it produces the semipersoid of revolution
(d). According to Corollary 2, the semitorus in Figure 36b and solid in (d) have the
same centroidal altitude. Consequently, the volume centroid of the semipersoid of
revolution in (d) has the same altitude as that of the semicircular disk in (a).

The same property holds for any horizontal slice of the configuration in Figure
36 because any horizontal slice of a semicircular disk has an axis of symmetry.

r
c c

r

(a) (b)

c

(c)

r

(d)

Figure 36. Semicircular disk (a), semitorus (b), and solid (d), obtained
by revolution of the lemniscate in (c), all have their centroid at the same
altitude.
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More generally, the foregoing analysis applies to any persoidal region cut by
a vertical plane passing through the hole of the torus. Moreover, it also applies
when the circular disk in Figure 36a is replaced by any symmetric plane region
generating a toroidal-like solid. For example, we can use an isosceles triangle as
in Figure 37a and rotate it around any vertical axis disjoint from the triangle. The
resulting toroidal-like solid will a punctured truncated cone, and the corresponding
persoid-like solids will be bounded by two hyperboloids of revolution as shown in
Figure 37b. Their centroids will be at the same altitude above the base, which in
this case is one-third the altitude of the triangle.

(b)(a)

Figure 37. (a) Punctured truncated cone with a section bounded by two
hyperbolas. (b) Hyperboloid of revolution punctured by another hyper-
boloid. The centroids of both solids have the same altitude as that of the
triangle.

Finally, we note that the special centroidal altitude lemma is also valid when the
symmetric plane region is swept tangentially along any cylinder whose generator is
parallel to the symmetry axis of the region. In view of Corollary 2, the tangentially
swept solid has its volume centroid at the same altitude as that of the plane region.

7. TANGENTIAL SWEEPING AROUND A GENERAL SURFACE

Earlier we generated solids by tangential sweeping along a cylinder or cone.
Now we use a more general surface as depicted by the lightly shaded region in
Figure 38, which we call a tangency surface. Take such a surface and slice it by a
family of horizontal parallel planes, as indicated in Figure 38a. Take a typical curve
of intersection as tangency curve, and construct a tangent sweep using vectors from
the tangency curve to some free-end curve. The free-end curves lie on another
surface, as illustrated in Figure 38a, which we call the free-end surface. For each
horizontal tangent sweep, construct its planar tangent cluster by translating each
tangent to a common point in that plane. The darker shaded regions in Figure 38
depict the tangent sweep and its cluster in the bottom plane. They have equal areas.
As we move from the bottom horizontal plane to the top one in Figure 38a, the solid
swept tangentially between the tangency surface and the free-end surface is called
a solid tangent sweep. Now construct the solid tangent cluster as the union of the
planar clusters with their common points lying on one vertical line P , as in Figure
38b.

Each horizontal plane intersects the solid tangent sweep and the solid tangent
cluster along plane regions having equal area. By the slicing principle, we have:
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Figure 38. (a) Solid tangent sweep. (b) Solid tangent cluster.

Theorem 4. The portion of a solid tangent sweep between any two horizontal
planes has the same volume as its corresponding solid tangent cluster.

Corollary 2 of Theorem 1 also is valid for solid sweeps and clusters in Theorem
3: The altitudes of the volume centroids above a fixed horizontal base are equal.

As in earlier examples, there is an alternative method for producing the solid
tangent sweep. Choose an initial tangent vector in the bottom horizontal plane
from the tangency surface to the free-end surface. As we move continuously from
the bottom plane to the top, select those tangent vectors of the tangency curves
parallel to the initial tangent vector. Their tangency points trace a curve which is
a directrix for a cylindrical region containing all these parallel tangency vectors.
This cylindrical region, which we call S, plays the same role as the plane region
S used earlier for sweeping along a cylinder or cone. It can change its shape as it
moves tangentially around the surface.

Tangency surfaces of revolution. In Figure 39a the tangency surface is a sphere of
diameter H , and S is a rectangular strip of width w wrapped tangentially with
one edge along a meridian joining the poles. As S rotates around the sphere, the
opposite edge sweeps part of the surface of a larger sphere, so the solid tangent
sweep is a solid spherical shell between two concentric spheres with the polar caps
of the larger sphere removed, as depicted in Figure 39b. Figure 39c shows the

H

(a) (b) (c)  cluster (d) (e)

w w w

S
S

w

w

Figure 39. (a) Rectangle sweeping around a sphere. (b) Solid tangential
sweep. (d) Rectangle sweeping around paraboloid. (e) Swept solid. (c)
Common solid tangent cluster.

corresponding solid tangent cluster, a circular cylinder of radius w and altitude H .
According to Theorem 3, the spherical shell and the cylinder have equal volumes.
This was also noted in [3; Theorem 5.2]. When a rectangle of width w is wrapped
around a paraboloid of altitude H as in Figure 39d, the corresponding solid tangent
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sweep is the solid paraboloidal shell in Figure 39e. The cylinder in Figure 39c is
its solid tangent cluster. Surprise: The volume of the paraboloidal shell in (e) is
equal to that of the spherical shell in (b)! Two more examples, with the paraboloid

(a) (b)w w

HS S

Figure 40. Rectangle sweeping around two types of hyperboloid in (a)
and (c). Their solid tangent sweeps have the same volume as their com-
mon tangent cluster cylinder in (b).

replaced by two types of hyperboloid, are shown in Figure 40a and 40b. Another
surprise: Each solid tangent sweep has volume equal to that of the cylinder in
Figure 39c.

Figure 41a shows an example of Figure 39a in which the inner surface is pro-
duced by rotating a curve y = y(x) around the x axis, and the outer surface is a
coaxial cylinder of radius a. A horizontal tangent vector from the surface to the

t  (x) = a  − y  (x)2 2 2

(a) (b) sin xcos x

x x xx

y
t

a S

wall

cluster

Figure 41. (a) Tangent of length t(x) from inner surface of revolution
to outer cylinder. (b) Tangential region S sweeps solid between rotated
cosine curve and cylinder of radius 1. Its wall projection is the ordinate
set of a sine curve; rotating it produces solid cluster.

cylinder has length t = t(x) given by t2(x) = a2 − y2(x). The vectors of length
t form a region S that generates a solid tangential sweep lying outside the surface
and inside the cylinder, and the wall projection is a plane region formed by the or-
dinate set of t(x). For example, if a = 1 and y(x) = cosx as shown in Figure 41b,
then t(x) = sinx, and the corresponding solid tangent cluster is a surface bounded
by rotating a sine curve. Its volume is equal to that of the solid tangent sweep.
Consequently, the solid between the cylinder and the rotated cosine has the same
volume as the rotated cosine, each being half that of the circumscribing cylinder.
The same is true, of course, for the solid between the cylinder and the rotated sine.

In Figure 42a, the inner surface is a paraboloid obtained by rotating the parabola
y2(x) = x around the x axis, and the wall projection is bounded by a portion of the
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(a) (b)wall wall
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Figure 42. (a) Paraboloid inscribed in cylinder. (b) Ellipsoid inscribed in cylinder.

parabola t2(x) = a2 − x, which is a flipped version of the original parabola. (The
flipped parabola also appears in another context in [3; p. 181].) The solid cluster, a
flipped version of the original paraboloid, has the same volume of the solid tangent
sweep. This example gives another proof of Archimedes’ result that the volume of
a paraboloid of revolution is half that of its circumscribing cylinder.

In Figure 42b an ellipsoid is inscribed in a cylinder, and the wall projection of
the plane region that generates the solid tangent cluster is a right triangle, shown
shaded. Rotating this triangle produces the tangent cluster, a right circular cone
whose volume, one-third that of the cylinder, is also that of the solid tangent sweep.
Finally, we remark that in the case of surfaces of revolution, the axial sections of
the tangential sweep and cluster are in chord-by-chord balance and hence in area
balance with respect to the axis of revolution.

8. CONCLUDING REMARKS

Start with any family of swept solids with circular horizontal cross sections.
Figure 43a shows the cross section of a typical member of the family and of its

(a) (b)

similar ellipsescircles dilatedsweep
cluster sweep

cluster

Figure 43. (a) Circular tangent sweep and cluster. (b) Horizontal dilation
of (a).

tangent cluster, both cross sections having the same area. If all members of the
family are dilated by a factor a in one horizontal direction, as indicated in Figure
44, all the cross sectional areas are multiplied by the factor a so all dilated cross
sectional areas will be equal. Consequently, all the solids in the dilated family of
equal height will have equal volumes and equal centroidal altitude above a fixed
horizontal base. But now the cross sections are elliptic, as indicated in Figure 44b,
and the dilated solids are elliptic quadrics punctured by elliptic quadrics.

We can also scale and dilate the elliptic cross sections so that they become par-
abolic, by moving one focus of the ellipse to infinity. This can be achieved on
the cone that is cut by a plane to produce the ellipse. The plane that cuts an el-
lipse can be rotated so it becomes parallel to a generator of the cone to transform
the ellipse to a parabola. Rotating the cutting plane further produces a hyperbola.
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dilated

circular elliptic(a) (b)

horizontal
section

sweep cluster sweep cluster

Figure 44. (a) Solid sweep and cluster. (b) Horizontal dilation of (a).

Consequently, proper scaling and dilation transforms punctured parabolic surfaces
to punctured hyperbolic surfaces.

Thus we see that families of swept solids of equal height and equal volume can
be extended to all types of quadric surfaces. These represent familiar examples of
swept solids swept by variable plane regions S bounded by conic sections.
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