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Some Theorems on Polygons
with One-line Spectral Proofs
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Abstract. We use discrete Fourier transforms and convolution products to give
one-line proofs of some theorems about planar polygons. We illustrate the method
by computing the perspectors of a pair of concentric equilateral triangles con-
structed from a hexagon and leave the proofs of Napoleon’s theorem, the Bar-
lotti theorem, the Petr–Douglas–Neumann theorem, and other theorems as an
exercise.

1. Introduction

The Fourier decomposition of a planar (or nonplanar [4]) polygon and circulant
matrices have been used for a long time in the study of polygon transformations
with a circulant structure (see [6] for a list of references). The replacement of cir-
culant matrices with convolution products simplifies the approach [6, 7] and allows
one-line proofs of many theorems about polygons: Napoleon’s theorem, the Bar-
lotti theorem, and the Petr–Douglas–Neumann theorem are such examples (Sec-
tion 7). Sections 3–5 provide a short but self-contained overview of the necessary
theory (see [6, 7] for more details). As an application we determine in Section 6
the perspectors of the pair of triangular Fourier components of a planar hexagon
and find so an elegant and enlightening solution to a problem treated in [3]. In
preparation for the hexagon problem we begin our exposition by expressing the
perspectors of two concentric equilateral triangles.

2. Perspectors of two concentric equilateral triangles

By a theorem attributed to D. Barbilian (1930), but which is older, two concen-
tric equilateral triangles are triply perspective [9] (with a short proof in trilinears),
[5], [2, p. 71], [8, pp. 91–92]. We prove this result by giving an explicit formula
for the perspectors (Figure 1).

Theorem 1. (1) Two equilateral triangles centered at the origin of the com-
plex plane with vertices 1 and v, |v| �= 1, respectively, have the perspectors

pk =
v2 − v

1− |v|2 ω
k = p0 ω

k, k = 0, 1, 2, where ω = ei2π/3. (1)
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Figure 1. Common locus of the three perspectors for |v| = 2.5

The position of pk on the line of the corresponding vertices ω� and vω−�−k

is given by the real quotient

pk − ω�

vω−�−k − ω�
=

1 + 2Re
(
vω�−k

)
1− |v|2 , � = 0, 1, 2. (2)

When one triangle has its vertices on the sidelines of the other, the per-
spectors pk are the vertices of the second triangle.

(2) If v /∈ {1, ω, ω} lies on the unit circle, the successive perspectors pk are
the points at infinity of the lines through 1 and vω−k obtained from one
another by a rotation of 2π/3 about 1.

(3) The origin is a further perspector when arg v is an integer multiple of π/3.

Proof. Plug formula (1) into formula (2) and verify directly. �
If v lies neither on the unit circle nor on a sideline of the triangle (1, ω, ω), the

map v �→ p0 =
(
v2 − v

)
/
(
1 − |v|2) is an involution whose fixed points z form

the circle |z + 1| = 1 without ω and ω. If in addition the triangle (v, vω, vω)
has no vertex on this circle, i.e., if 1 is not on its sidelines, the (different) triangles
(1, ω, ω), (v, vω, vω), and (p0, p1, p2) form a triad: each of them is perspector
triangle of the others.

3. Spectral decomposition of a planar polygon

For an integer n ≥ 2, an n-gon P in the complex plane is the sequence P =
(zk)

n−1
k=0 of its vertices in order representing the closed polygonal line

z0 → z1 → · · · → zn−1 → z0

starting at z0. The vertices are indexed modulo n. We set ζ = ei2π/n and use the
Fourier basis of Cn (Figure 2) constituted by the standard regular {n/k}-gons

Fk =
(
ζk�
)n−1

�=0
, k = 0, 1, . . . , n− 1.

After the starting vertex 1, each vertex of Fk is the kth next nth root of unity.
F0 = (1, 1, . . . , 1) is a trivial polygon and the other basis polygons are centered
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Figure 2. Fourier basis of C6

at the origin with Fk = Fn−k. The Fourier basis is orthonormal with respect to the
inner product of Cn given by

〈P,Q〉 = 〈(zk)n−1
k=0 , (wk)

n−1
k=0

〉
=

1

n

n−1∑
k=0

zkwk.

The discrete Fourier transform or spectrum of P is the polygon P̂ = (ẑk)
n−1
k=0 given

by the spectral decomposition of P in the Fourier basis:

P =

n−1∑
k=0

ẑkFk with ẑk = 〈P, Fk〉 , k = 0, 1, . . . , n− 1,

where each nonzero ẑk rotates and scales up or down the basis polygon about the
origin. The trivial polygon ẑ0F0 corresponds to the (vertex) centroid ẑ0 of P .

4. Convolution filters

We consider a filter ΦΓ : C
n → Cn given by the cyclic convolution ∗ with a

fixed polygon Γ = (c0, c1, . . . , cn−1): the kth entry of ΦΓ(P ) = P ∗Γ = Γ ∗P is

∑
�1+�2=k (mod n)

z�1c�2 =
n−1∑
�=0

z�ck−�, k = 0, 1, . . . , n− 1.

A circulant linear transformation of a polygon in the complex plane that is given by
the coefficients (ak)

n−1
k=0 of the circulant linear combination of the vertices is simply

the convolution of the initial polygon with the polygon (a0, an−1, an−2, . . . , a1)
obtained from (a0, a1, . . . , an−1) by going the other way around. The operator ∗
is commutative, associative and bilinear.
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Since Fk ∗ F� =

{
nFk (k = �)

(0, 0, . . . , 0) (k �= �)
, one has

ΦΓ(P ) = P ∗ Γ =

(
n−1∑
k=0

ẑkFk

)
∗
(

n−1∑
�=0

ĉ�F�

)
=

n−1∑
k=0

nĉkẑkFk,

i.e.,
̂P ∗ Γ = nP̂ · Γ̂,

where · is the entrywise product: the Fourier basis is a basis of eigenvectors of the
convolution ΦΓ with eigenvalues nĉk (geometrically clear!). ΦΓ(P ) and P always
have the same centroid if and only if

∑n−1
k=0 ck = 1, which means ĉ0 = 1/n; the

centroid is always translated to the origin if and only if ĉ0 = 0.

5. Ears and diagonals

A Kiepert n-gon consists of the apices of similar triangular ears that are erected
in order on the sides of the initial polygon P = (zk)

n−1
k=0 (beginning with the side

z0 → z1) and that are directly similar to the normalized triangle (0, 1, a) ∈ C3

with apex a: the apex of the ear for the side z0 → z1 is defined as z1 + a(z0 − z1);
it is a right-hand ear if Im a > 0. The corresponding Kiepert polygon is thus given
by the centroid-preserving convolution of P with

K(a) = (a, 0, . . . , 0, 1− a).

An �-diagonal midpoint n-gon consists of the midpoints of the diagonals zk →
zk+� taken in order over the initial polygon P = (zk)

n−1
k=0 . As its first vertex is

(z0 + z�)/2, the �-diagonal midpoint n-gon is given by the centroid-preserving
convolution of P with

M� =

position

1

2
(1
↑
0

, 0, . . . , 0, 1
↑

n−�

, 0, . . . , 0
↑

n−1

).

We will only use the fact that these transformations are convolution products
since they are circulant linear maps. We need neither the explicit convolving poly-
gon nor its spectrum.

6. Filtered hexagons

Theorem 2. Erect right-hand equilateral triangles on the sides of a planar hexa-
gon. The midpoints of the opposite ear centers are the vertices of an equilateral
triangle T . Left-hand ears lead to an equilateral triangle T ′ centered, as T , at the
vertex centroid of the hexagon.

Proof. For the hexagon

H = (zk)
5

k=0 =
5∑

k=0

ẑkFk
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the triangle T corresponding to right-hand ears is simply

T = H ∗K(aπ/6) ∗M3 with aπ/6 =
1√
3
eiπ/6.

The convolution with K(aπ/6) erects right-hand isosceles ears with base angles
π/6. The following facts are geometrically immediate (Figure 2): F1, F3, and F5

are filtered out by the diagonal midpoint construction, whereas F0 and F2 are left
unchanged. F4 is deleted by the ear erection, F0 is left unchanged, and F2 is rotated
by π/3. By linearity, associativity, and commutativity of the convolution product,
T is thus the (doubly covered) equilateral triangle

T = ẑ0F0 + ηẑ2F2 for η = eiπ/3

with the same centroid as the hexagon (T collapses to the centroid if H is F2-free).
Left-hand ears lead to

T ′ = ẑ0F0 + ηẑ4F4. �
Notice that the components T1 = ẑ0F0 + ẑ2F2 and T ′

1 = ẑ0F0 + ẑ4F4 of the
hexagon can be retrieved from T and T ′, respectively: T and T1 form a regular
hexagram, as do T ′ and T ′

1 as well as the perspector triangles of T , T ′ and T1, T ′
1.

Since

ẑ2 =
1

6
(z0 + z3 + ω(z1 + z4) + ω(z2 + z5)) and

ẑ4 =
1

6
(z0 + z3 + ω(z1 + z4) + ω(z2 + z5)) for ω = ei2π/3,

(ẑ0, ẑ2, ẑ4) is the spectrum of the triangle (wk)
2

k=0 =
1
2(zk + zk+3)

2
k=0 formed by

the first lap of H ∗ M3 and depends thus only (and bijectively) on the midpoints
of the opposite vertices of H . These midpoints are collinear if and only if ẑ2 and
ẑ4 have the same modulus [7]. Otherwise, the perspector p0 of T and T ′ is by
Theorem 1

p0 = ẑ0 +
v2 − v

1− |v|2 ηẑ4 for v = ωẑ2/ẑ4, (3)

ωẑ2/ẑ4 being the quotient of the vertices ηẑ2 of T − ẑ0F0 and ηẑ4 of T ′ − ẑ0F0.
After transformation, formula (3) leads to the following result.

Theorem 3. Consider a hexagon (zk)
5

k=0 for which the midpoints

wk =
zk + zk+3

2
, k = 0, 1, 2,

of the opposite vertices are not collinear. The equilateral triangles T and T ′ from
Theorem 2 have then the perspectors

pk = ẑ0 +
ẑ 2
2 ẑ4 − ẑ2ẑ

2
4

|ẑ2|2 − |ẑ4|2
ωk, k = 0, 1, 2, where ω = ei2π/3,

and p0 can be written as

p0 =

∑
cyclic |w0|2 (w1 − w2)∑

cyclic w0(w1 − w2)
. (4)

(Formula (4) corrects the corresponding formula of [3].)
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7. Other theorems with one-line spectral proofs

The following examples also have one-line spectral proofs, which are – with two
exceptions – left to the reader as an exercise!

7.1. Equilaterality. A triangle (z0, z1, z2) is positively oriented and equilateral (or
trivial) if and only if

ẑ2 = z0 + ωz1 + ωz2 = 0.

Negatively oriented equilateral triangles correspond to ẑ1 = 0.

7.2. Napoleon’s theorem. The centers of right-hand equilateral triangles erected
on the sides of a triangle are the vertices of an equilateral (or trivial) triangle. The
same is true for left-hand ears.

7.3. The Barlotti theorem. An n-gon in the complex plane is an affine image of
Fk, k �= 0, i.e., of the form aF0 + bFk + cFn−k, if and only if the centers of scaled
copies of Fk erected on the sides are the vertices of a scaled copy of Fk.

7.4. Side midpoint quadrilateral. The side midpoints of a (planar) quadrilateral
are the vertices of a parallelogram.

7.5. The Petr–Douglas–Neumann theorem. Start from a planar n-gon and replace
it with the polygon whose vertices are the centers of scaled copies of some Fk,
k �= 0, erected on the sides. Repeat the operation on the actual polygon with
another Fk until all integers k ∈ [1, n− 1] have been used. The result is the vertex
centroid of the initial polygon.

Proof. The Fk-step erases (only) Fn−k. �

Remark. The Fk-step, k �= 0, transforms obviously affine images of Fk into (pos-
sibly trivial) scaled copies of Fk and no other planar n-gon into an affine image
of Fk: thus polygons becoming regular after more than one Fk-step do not exist –
although they are explicitly described in [1] for k = 1!

7.6. A theorem à la van Aubel. The midpoints of the diagonals of a planar quadri-
lateral Q and the midpoints of the opposite centers of right-hand squares erected
on the sides of Q form a square. The same is true for left-hand squares.

Proof. The midpoint step erases F1 and F3 without changing F2. The half-square
ear step turns F2 by π/2. �

7.7. Generalized van Aubel’s theorem. Erect right-hand squares on the sides of a
planar octagon and take the quadrilateral Q whose vertices are the midpoints of the
opposite square centers: Q has congruent and perpendicular diagonals and remains
unchanged if one permutes the two transformations. The same is true for left-hand
squares.
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7.8. Generalized Thébault’s theorem. Replace a planar octagon with the octagon
of the side midpoints, erect right-hand squares on the sides of this midpoint oc-
tagon and take the quadrilateral Q whose vertices are the midpoints of the opposite
square centers: Q is a square that remains unchanged for any order of the three
transformations. The same is true for left-hand squares.

Remark. The transformation

Φ: P = (zk)
n−1
k=0 �→ (azk + zk+1 + zk−1)

n−1
k=0

multiplies the basis polygons F� and F� by a + 2 cos(2�π/n), and Φ/(a + 2) is
centroid-preserving if a �= −2. The choice a = −2 cos(2�0π/n), �0 �= 0, erases
thus exactly F�0 and Fn−�0 . To delete Fn−�0 only, perform the F�0-step of the
Petr–Douglas–Neumann theorem.

7.9. Filtered pentagon. If φ is the golden ratio and a = φ or 1 − φ, the pentagon
P = (azk + zk+1 + zk−1)

4
k=0 obtained from (zk)

4
k=0 is affinely regular and has

thus a circumellipse. Unless its vertices are collinear, P is convex for a = φ and a
pentagram for a = 1− φ.
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[4] G. Darboux, Sur un problème de géométrie élémentaire, Bull. Sci. Math. Astr. 2e Sér., 2 (1878)

298–304. http://archive.numdam.org/ARCHIVE/BSMA/BSMA 1878 2 2 1
/BSMA 1878 2 2 1 298 1/BSMA 1878 2 2 1 298 1.pdf

[5] F. Morley, On the geometry whose element is the 3-point of a plane, Trans. Am. Math. Soc., 5
(1904) 467–476.

[6] G. Nicollier, Convolution filters for polygons and the Petr–Douglas–Neumann theorem, Beitr.
Algebra Geom., 54 (2013) 701–708.

[7] G. Nicollier, Convolution filters for triangles, Forum Geom., 13 (2013) 61–85.
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