
Forum Geometricorum
Volume 16 (2016) 317–321. � �

�

�

FORUM GEOM

ISSN 1534-1178

A Strengthened Version of the Erdős-Mordell Inequality
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Abstract. We present a strengthened version of the Erdős-Mordell inequality
and its proofs.

1. The main result

In 1935, Paul Erdős proposed the following inequality as Problem 3740 in the
AMERICAN MATHEMATICAL MONTHLY.

Theorem 1 ([1]). If from a point O inside a given triangle ABC, the perpendicu-
lars OD, OE, OF are drawn to its sides, then OA+OB+OC ≥ 2(OD+OE+
OF ). Equality hold if and only if triangle ABC be an equilateral triangle.

There is an extensive literature on the Erdős-Mordell inequality; some proofs
can be found in [1, 2, 3]. In this article, we give a strengthened version of Theorem
1 and its proofs.

Theorem 2 ([4]). Let ABC be a triangle inscribed into a circle (O), and P be
a point inside the triangle. Let D, E, F be the orthogonal projections of P onto
BC, CA, AB respectively, and H , K, L be the orthogonal projections of P onto
the tangents to (O) at A, B, C respectively. Then PH + PK + PL ≥ 2(PD +
PE + PF ).
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Figure 1

We give two proofs of Theorem 2.
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2. The first proof

Lemma 3. The cyclic quadrilateral PEHF is a convex quadrilateral.

Proof. Case 1. If ∠BAC < 90◦, ∠PAB and ∠PAC are acute angles. Then
the points E, F are on the the rays AC, AB respectively. Hence, the ray AP is
between the rays AE and AF (see Figures 2a and 2b).
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Figure 2b

Notice that four points P , E, H , F lie on a circle with diameter AP . The cyclic
quadrilateral PEHF is a convex quadrilateral.
Case 2. If ∠BAC ≥ 90◦, the ray AO is between the rays AB and AC. Let G
be the intersection of AO and BC. Without loss of the generality, we may assume
that the point P is inside triangle AGC or on the segment AG (P �= A,G). We
have ∠GAC = 90◦ − ∠ABC, and is acute. Therefore E lies on the ray AC (see
Figures 3a and 3b).
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Figure 3b

Since OA ‖ PH , H and P lie on the same side of the line AO. Then the ray AE
is between the rays AH and AP . Notice that four points P , E, H , F lie on a circle
with diameter AP . The cyclic quadrilateral PEHF is a convex quadrilateral. �
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First proof of Theorem 2. According to Lemma 3, the cyclic quadrilaterals PEHF ,
PFKD, and PDLE are convex. Applying Ptolemy’s theorem to quadrilateral
PEHF , we have PH · EF = PE ·HF + PF ·HE. Thus,

PH =
HF

EF
· PE +

HE

EF
· PF

=
sinHEF

sinEHF
· PE +

sinHFE

sinEHF
· PF

=
sinC

sinA
· PE +

sinB

sinA
· PF

=
c

a
· PE +

b

a
· PF,

where a, b, c are the lengths of the sides BC, CA, AB of triangle ABC.
Similarly,

PK =
a

b
· PF +

c

b
· PD,

PL =
b

c
· PD +

a

c
· PE.

Combining these equations we obtain

PH + PK + PL =

(
b

c
+

c

b

)
PD +

( c

a
+

a

c

)
PE +

(
a

b
+

b

a

)
PF

≥ 2(PD + PE + PF ).

Equality holds if and only if a = b = c, i.e., ABC is an equilateral triangle.

3. The second proof

Consider the function with two variables

f(P ) = PH + PK + PL− 2(PD + PE + PF )

for an arbitrary point P inside triangle ABC. (By using the formula for the dis-
tance from a point to a line, we can extend f(P ) to a linear function on R

2).
Because triangle ABC is convex, f(P ) attains its minimum at one of the three
vertices of triangle ABC.

We have

f(A) = AK +AL− 2 ·AD
= c sinC + b sinB − 2c sinB

= 2R(sinB − sinC)2

≥ 0. (∗)
See Figures 4a and 4b. Similarly, f(B), f(C) ≥ 0. Therefore, f(P ) ≥ 0 for every
point P inside and on the perimeter of triangle ABC.
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4. A weighted version

Theorem 4. Let ABC be a triangle inscribed into a circle (O), and P be a point
inside the triangle. Let D, E, F be the orthogonal projections of P onto BC,
CA, AB respectively, and H , K, L be the orthogonal projections of P onto the
tangents to (O) at A, B, C respectively. Then

x2 · PH + y2 · PK + z2 · PL ≥ 2yz · PD + 2zx · PE + 2xy · PF

for x, y, z ∈ R.

Proof. Similar to the second proof of Theorem 2, we set

f(P ) = x2 · PH + y2 · PK + z2 · PL− 2yz · PD − 2zx · PE − 2xy · PF.

Then (*) becomes

f(A) = y2 ·AK + z2 ·AL− 2yz ·AD
= y2c sinC + z2b sinB − 2yzc sinB

= 2R(y sinC − z sinB)2

≥ 0.

Similarly, f(B), f(C) ≥ 0. From the convexity of triangle ABC, we conclude
that min f(P ) ≥ 0 for P inside or on the perimeter of triangle ABC. �

References
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