

A Strengthened Version of the Erdős-Mordell Inequality

Dao Thanh Oai, Nguyen Tien Dung and Pham Ngoc Mai

Abstract. We present a strengthened version of the Erdős-Mordell inequality and its proofs.

1. The main result

In 1935, Paul Erdős proposed the following inequality as Problem 3740 in the AMERICAN MATHEMATICAL MONTHLY.

Theorem 1 ([1]). If from a point O inside a given triangle ABC, the perpendiculars OD, OE, OF are drawn to its sides, then $OA + OB + OC \ge 2(OD + OE + OF)$. Equality hold if and only if triangle ABC be an equilateral triangle.

There is an extensive literature on the Erdős-Mordell inequality; some proofs can be found in [1, 2, 3]. In this article, we give a strengthened version of Theorem 1 and its proofs.

Theorem 2 ([4]). Let ABC be a triangle inscribed into a circle (O), and P be a point inside the triangle. Let D, E, F be the orthogonal projections of P onto BC, CA, AB respectively, and H, K, L be the orthogonal projections of P onto the tangents to (O) at A, B, C respectively. Then $PH + PK + PL \ge 2(PD + PE + PF)$.

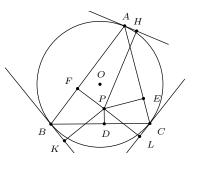


Figure 1

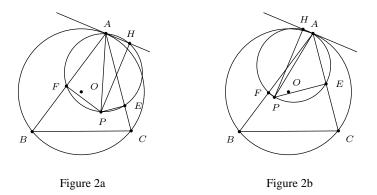
We give two proofs of Theorem 2.

Publication Date: October 13, 2016. Communicating Editor: Paul Yiu.

2. The first proof

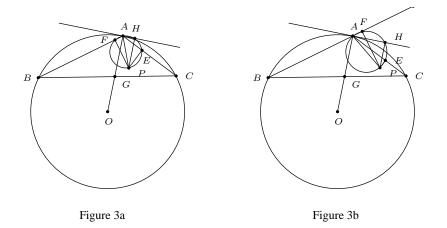
Lemma 3. The cyclic quadrilateral *PEHF* is a convex quadrilateral.

Proof. Case 1. If $\angle BAC < 90^\circ$, $\angle PAB$ and $\angle PAC$ are acute angles. Then the points *E*, *F* are on the the rays *AC*, *AB* respectively. Hence, the ray *AP* is between the rays *AE* and *AF* (see Figures 2a and 2b).



Notice that four points P, E, H, F lie on a circle with diameter AP. The cyclic quadrilateral PEHF is a convex quadrilateral.

Case 2. If $\angle BAC \ge 90^\circ$, the ray AO is between the rays AB and AC. Let G be the intersection of AO and BC. Without loss of the generality, we may assume that the point P is inside triangle AGC or on the segment AG ($P \ne A, G$). We have $\angle GAC = 90^\circ - \angle ABC$, and is acute. Therefore E lies on the ray AC (see Figures 3a and 3b).



Since $OA \parallel PH$, H and P lie on the same side of the line AO. Then the ray AE is between the rays AH and AP. Notice that four points P, E, H, F lie on a circle with diameter AP. The cyclic quadrilateral PEHF is a convex quadrilateral. \Box

First proof of Theorem 2. According to Lemma 3, the cyclic quadrilaterals PEHF, PFKD, and PDLE are convex. Applying Ptolemy's theorem to quadrilateral PEHF, we have $PH \cdot EF = PE \cdot HF + PF \cdot HE$. Thus,

$$PH = \frac{HF}{EF} \cdot PE + \frac{HE}{EF} \cdot PF$$

= $\frac{\sin HEF}{\sin EHF} \cdot PE + \frac{\sin HFE}{\sin EHF} \cdot PF$
= $\frac{\sin C}{\sin A} \cdot PE + \frac{\sin B}{\sin A} \cdot PF$
= $\frac{c}{a} \cdot PE + \frac{b}{a} \cdot PF$,

where *a*, *b*, *c* are the lengths of the sides *BC*, *CA*, *AB* of triangle *ABC*. Similarly,

$$PK = \frac{a}{b} \cdot PF + \frac{c}{b} \cdot PD,$$

$$PL = \frac{b}{c} \cdot PD + \frac{a}{c} \cdot PE.$$

Combining these equations we obtain

$$PH + PK + PL = \left(\frac{b}{c} + \frac{c}{b}\right)PD + \left(\frac{c}{a} + \frac{a}{c}\right)PE + \left(\frac{a}{b} + \frac{b}{a}\right)PF$$
$$\geq 2(PD + PE + PF).$$

Equality holds if and only if a = b = c, i.e., ABC is an equilateral triangle.

3. The second proof

Consider the function with two variables

$$f(P) = PH + PK + PL - 2(PD + PE + PF)$$

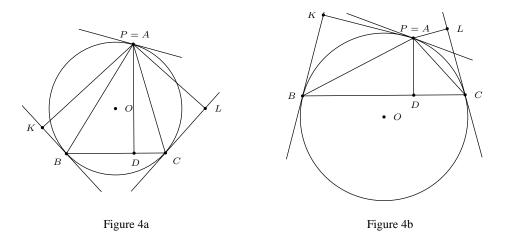
for an arbitrary point P inside triangle ABC. (By using the formula for the distance from a point to a line, we can extend f(P) to a linear function on \mathbb{R}^2). Because triangle ABC is convex, f(P) attains its minimum at one of the three vertices of triangle ABC.

We have

$$f(A) = AK + AL - 2 \cdot AD$$

= $c \sin C + b \sin B - 2c \sin B$
= $2R(\sin B - \sin C)^2$
 $\geq 0.$ (*)

See Figures 4a and 4b. Similarly, $f(B), f(C) \ge 0$. Therefore, $f(P) \ge 0$ for every point *P* inside and on the perimeter of triangle *ABC*.



4. A weighted version

Theorem 4. Let ABC be a triangle inscribed into a circle (O), and P be a point inside the triangle. Let D, E, F be the orthogonal projections of P onto BC, CA, AB respectively, and H, K, L be the orthogonal projections of P onto the tangents to (O) at A, B, C respectively. Then

$$x^2 \cdot PH + y^2 \cdot PK + z^2 \cdot PL \ge 2yz \cdot PD + 2zx \cdot PE + 2xy \cdot PF$$

for $x, y, z \in \mathbb{R}$.

Proof. Similar to the second proof of Theorem 2, we set

$$f(P) = x^2 \cdot PH + y^2 \cdot PK + z^2 \cdot PL - 2yz \cdot PD - 2zx \cdot PE - 2xy \cdot PF.$$

Then (*) becomes

$$f(A) = y^2 \cdot AK + z^2 \cdot AL - 2yz \cdot AD$$

= $y^2 c \sin C + z^2 b \sin B - 2yz c \sin B$
= $2R(y \sin C - z \sin B)^2$
> 0.

Similarly, $f(B), f(C) \ge 0$. From the convexity of triangle ABC, we conclude that $\min f(P) \ge 0$ for P inside or on the perimeter of triangle ABC.

References

- P. Erdős, L. J. Mordell, and D. F. Barrow, Problem 3740, Amer. Math. Monthly, 42 (1935) 396; solutions, ibid., 44 (1937) 252–254.
- [2] C. Alsina and R. B. Nelsen, A visual proof of the Erdős-Mordell inequality, Forum Geom., 7 (2007) 99–102.
- [3] H. Lee, Another proof of the Erdős-Mordell theorem, Forum Geom., 1 (2001) 7-8.
- [4] T. O. Dao, Advanced Plane Geometry, message 3374, July 24, 2016.

Dao Thanh Oai: Cao Mai Doai, Quang Trung, Kien Xuong, Thai Binh, Vietnam. *E-mail address*: daothanhoai@hotmail.com

Nguyen Tien Dung: Long Bien, Hanoi, Vietnam. *E-mail address*: tiendung12121993@gmail.com

Pham Ngoc Mai: 91 Chua Lang, Dong Da, Hanoi, Vietnam. *E-mail address*: phamngocmai@ftu.edu.vn