Forum Geometricorum
Volume 16 (2016)

Join yahoo discussion group Advanced Plane Geometry
to receive FG publication announcements.

Return to Forum Geometricorum Home Page

1. Jaydeep Chipalkatti, On the coincidences of Pascal lines, 1--21.
2. Hiroshi Okumura, Two pairs of Archimedean circles derived from a square,, 23--24.
3. Shane Chern, Integral right triangle and rhombus pairs with a common area and a common perimeter, 25--27.
4. Nikolaos Dergiades, Geogebra construction of the roots of quadratic, cubic and quartic equations, 29--35.
5. Joseph Tonien, Trisecting an angle correctly up to arcminute, 37--41.
6. Jawad Sadek, Magid Bani-Yaghoub, and Noah H. Rhee, Isogonal conjugates in a tetrahedron, 43--50.
7. Antonio M. Oller-Marcén Archimedes' arbelos to the n-th dimension, 51--56.
8. Nguyen Van Linh, Another synthetic proof of Dao's generalization of the Simson line theorem, 57--61.
9. Alan Horwitz, A ladder ellipse problem, 63--67.
10. Pascal Schreck, Pascal Mathis, Vesna Marinkovic, and Predrag Janicic, Wernick's list: a final update, 69--80.
11. Yurii N. Maltsev and Anna S. Kuzmina, An improvement of Birsan's inequalities for the sides of a triangle, 81--84.
12. J. Marshall Unger, Solutions of two Japanese ellipse problems, 85--94.
13. Hartmut Warm, The golden section in a planar quasi twelve-point star, 95--98.
14. Csaba Biró and Robert C. Powers, A strong triangle inequality in hyperbola geometry, 99--114.
15. Paris Pamfilos, The triangle construction { α, b-c, t_A} 115--117.

16. Emmanuel A. J. García and Paul Yiu, Golden sections of triangle centers in the golden triangles, 119--124.
17. Dieter Ruoff, Ascending lines in the hyperbolic plane, 125--132.
18. Igor Minevich and Patrick Morton, A quadrilateral half-turn theorem, 133--139.
19. Arthur Holshouser, Stanislav Molchanov, and Harold Reiter, Applying Poncelet's theorem to the pentagon and the pentagonal star, 141--149.
20. Arthur Holshouser, Stanislav Molchanov, and Harold Reiter, A special case of Poncelet's problem, 151--170.
21. Sándor N. Kiss and ZoltánKovács, Isogonal conjugacy through a fixed point theorem, 171--178.
22. Kenta Kobayashi, A recursive formula for the circumradius of the n-simplex, 179--184.
23. Cesare Donolato, A proof of the butterfly theorem using Ceva's theorem, 185--186.
24. Junghyun Lee, Minyoung Hwang, and Cheolwon Bae, Some loci in the animation of a Sangaku diagram, 187--191.
25. Joachim König and Dmitri Nedrenco, Septic equations are solvable by 2-fold origami, 193--205.
26. Paris Pamfilos, On the diagonal and inscribed pentagons of a pentagon, 207--225.
27. Poo-Sung Park, Regular polytopic distances, 227--232.
28. Grégoire Nicollier, Area of the orthic quadrilaterals of a convex cyclic orthodiagonal quadrilateral, 233--239.
29. Gotthard Weise, Cevian projections of inscribed triangles and generalized Wallace lines, 241--248.
30. Abdilkadir Altintaş, Some collinearities in the heptagonal triangle, 249--256.
31. Francisco Javier García Capitán, Locus of centroids of similar inscribed triangles, 257--267.
32. Dao Thanh Oai, Some golden sections in the equilateral and right isosceles triangles, 269--272.
33. Djura Paunić and Paul Yiu, Regular polygons and the golden section, 273--281.
34. Sándor N. Kiss, A distance property of the Feuerbach point and its extension, 283--290.
35. Dimitris M. Christodoulou, Euclidean figures and solids without incircles or inspheres, 291--298.
36. Nguyen Thanh Dung, The Feuerbach point and the Fuhrmann triangle, 299--311.
37. Pascal Honvault, Similarities on a sphere, 313--316.
38. Dao Thanh Oai, Nguyen Tien Dung and Pham Ngoc Mai, A strengthened version of the Erdos-Mordell inequality, 317--321.
39. Jozsef Vass, Apollonian circumcircles of IFS fractals, 323--330.
40. Paris Pamfilos, A characterization of the rhombus, 331--336.
41. Martin Celli, A proof of the butterfly theorem using the similarity factor of the two wings, 337--338.
42. Glenn T. Vickers, The 19 congruent Jacobi triangles, 339--344.
43. Tran Quang Hung, Another synthetic proof of the butterfly theorem using the midline in triangle, 345--346.
44. Grégoire Nicollier, Two six-circle theorems for cyclic pentagons, 347--354.
45. Toufik Mansour and Mark Shattuck, Some monotonicity results related to the Fermat point of a triangle, 355--366.
46. Cyril Letrouit, On a new generalization of the Droz-Farny line, 367--369.
47. Tran Quang Hung, Euler line in the golden rectangle, 371--372.>
48. Sándor N. Kiss, Distances among the Feuerbach points, 373--379.
49. Albrecht Hess, Daniel Perrin, and Mehdi Trense A group theoretic interpretation of Poncelet's theorem -- the real case, 381--395.
50. Grégoire Nicollier, Minimal proof of a generalized Droz-Farny theorem, 397--398.
51. Sergey F. Osinkin, On the existence of a triangle with prescribed bisector lengths, 399--405.
52. Gerhard Heindl, How to compute a triangle with prescribed lengths of its internal angle bisectors, 407--414.
53. Ngo Quang Duong and Vu Thanh Tung, A generalization of Droz-Farny's line theorem with orthologic triangles, 415--418.
54. Giovanni Lucca, Circle chains inscribed in symmetrical lenses and integer sequences, 419--427.
55. Frank Leitenberger, Iterated harmonic divisions and the golden ratio, 429--430.