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On the Tucker Circles
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Abstract. Parametrizing Tucker circles by the lengths of their antiparallel sides,
we find conditions for which Tucker circles are congruent, orthogamahngen-

tial. In particular, we show that the Gallatly circle, which is the common pedal
circle of the Brocard points, is the smallest Tucker circle, not orthdgoreny
Tucker circle, and congruent Tucker circles are symmetric with gpethe

line joining the Brocard points. Some orthology results are also obtained.

1. The Tucker hexagon .7 (t)

Given triangleABC, let B, andC, be points on the sideline4C and AB such
that triangleAB,C,, is oppositely similar taABC. The line B,C,, is antiparal-
lel to BC, meaning thatB,C, is parallel to the sidéf, H. of the orthic triangle
H,HyH, of triangle ABC (see Figure 1). Thus, we have through
B, the antiparallel ta3C' to intersect4d B atC,. Continue to construct through
C, the parallel toC A to intersectBC at A., then through
A, the antiparallel toA B to intersecC A at B,, then through
B. the parallel taBC to intersectd B at Cj, then through
C the antiparallel ta”' A to intersectBC at A, then through
Ay the parallel toA B to intersect the lin€” A.

This last intersection is the same as the pdiyt thus completing a hexagon
B.,C,A.B.CyA, whose sides are alternately antiparallel and parallel to the sides
of triangle ABC'. This is called a Tucker hexagon.

Let a, b, ¢ be the lengths of the sidd3C, C' A, AB of triangle ABC, and R
its circumradius. SupposB,C, = t, positive or negative according &, and
C, are on the half-linesAC' and AB or their complementary half-lines. Then
AC, = Y, AB, = <. It follows that BA, = <, BC, = %, CA, = Y,

a

CB. = %t TrianglesA, BC, and A.B.C are also oppositely similar td BC.
Also, B,C, = Cy A, = A.B. = t. The three antiparallel sides &f (¢) have equal
lengthst. With reference to trianglel BC, the vertices of the Tucker hexagon

7 (t) have homogeneous barycentric coordinates

By=(ab—ct:0:ct) | Cy = (ca—bt:bt:0)
Cr=(at:bc—at:0)| Ap=(0:ab—ct:ct) 1)
A= (0:bt:ca—bt) | B.= (at:0:bc— at)

We shall also make use of tlabsolute barycentric coordinates of finite points by
normalizing their homogeneous coordinates, i.e., by dividing by their ccaalin
sum.
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Figure 1. A Tucker hexagon

It is convenient to make use of the elementary symmetric function$, of, ¢*:
N=ad?>+ 02+, p=0+Pa® +ad*?, vi=d?bPE (2
We shall also denote by twice the area of trianglel BC'.

In absolute barycentric coordinates, the circumcenter and the symmedidn po
of triangle ABC are the points

1

0= (g (@* (A —20%), (A = 20°), (A —2¢%)), ®)
K= %(a? b%, ), )
Lemmal. (a)4u — A2 = 452
(b) \* — 3u > 0.
Proof. (a)

4p— A2 = 20%¢2 + 2¢%a% + 2020 — ot — bt — ¢
= (a+b+c)b+c—a)(c+a—Db)(a+b—rc)

= 45%,
(b)
N —3u = at + b+t — 02 - 2a? - dPD?
1
_ 5 ((b2 o 62)2 + (62 o a2)2 4 (a2 o 62)2) .

O

Proposition 2. The midpoints L,, L, L. of the antiparallel sides of .7 (t) are
on the symmedians AK, BK, C'K respectively, and divide AK, BK, CK inthe
sameratio

AL, LoK = BLy: LyK = CL.: LK = M : 2/v — M\t (5)
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Proof. The midpoint of the antiparallel side,C, is

1
La - *(Ba + Ca)

2

= 1 (12 2 2 2
= 5 (2abe — (b° + )t b, ct)

1 2 2 2
= 575 (V7 =2, 0,0) + (@4,5, &)

v

1

= 2\7(2xf — M)A+ MK). (6)

This shows thalL,, is a point on the symmediafiK’, and it dividesA K in the ratio
AL, : LyK = At : 2\/v — )t (see Figure 2).
The same is true fok, and L. O

A

Figure 2

Proposition 3. (a) Thetriangles ABC and L, L, L. are homothetic at the symme-
dian point K.
(b) They are also orthologic.
(i) The perpendiculars from A to L L., B to L.L,, and C to L,L; are con-
current at the orthocenter H.
(if) The perpendicularsfrom L, to BC, L, to C' A, and L. to AB are concur-
rent at the point @ dividing H K intheratio HQ(t) : Q(t)K = A\t : 24/v — At.

Proof. (a) follows from (5).

(b) The orthology follows from the homothety.
(i) is clear.
(ii) The perpendicular front., to BC, being parallel tcA H, intersectsH K at a
pointQ(t) suchthati Q(t) : Q(t)K = AL, : L,K = Xt : 2,/v — Xt (see Figure
2). By Proposition 2, the perpendiculars frap to C A and L. to AB intersect
HK at the same poin®(t). O
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Proposition 4. (a) The perpendicular bisectors of the antiparallel sides B,C,,
CyAyp, AcB. of the Tucker hexagon .7 (t) are concurrent at the point L(¢) dividing
OK intheratio

OL(t) : L(t)K = At : 2\/v — AL.

(b) The point L(t) is at a distance 2‘/4’75’ A from each of the anti parallels.
Proof. (a) From (6) it follows that
2/VLy + (Mt — 2¢/V)A = ALK,

and

2VvLg + (M —2y/V)(A = 0) = (2/v — A\t)O + AK.
This means that the parallel throudh to O A intersectsD K at a pointL(t) di-
viding OK in the ratio

OL(t) : L(t)K = At : 2\/v — \t; (7)

see Figure 2. Since the coefficients are all symmetric functiong,af?, ¢, the
analogues of (7) hold wheh,, A are replaced by, B, andL., C respectively.
This means that the parallels through, Ly, L. to OA, OB, OC are concurrent
at the same poink(¢) (see Figure 3).

(b) The antiparallel sidéB,C,, being parallel to the sidéf, H. of the orthic
triangle, is perpendicular to the circumradius!. Equation (7) shows thdi(t) is
at a distance

1 At R_Q\ﬁ—)\t @_2[—)@5
2,/v 2y 28 48
from B,C,. This is the same for the antiparall€lsA, and A B.. O

Remark. In homogeneous barycentric coordinates,

L(t) = (a®(abe(b? + 2 — a®) + t(a®(b? + ) — (b* + b))
b2 (abe(c® 4 a? — b%) + t(b? (2 + a®) — (c* + a?))
D P abe(a® + 07 = ) + 1P (0 +0%) = (@' +0Y). (8)

Corollary 5 (Construction of Tucker hexagan)et H, H, H. bethe orthic triangle
of ABC, and L a point on the Brocard axis. If the parallels through L to the
circumradii OA, OB, OC intersect the symmedians AKX, BK, CK at L,, Ly, L.

respectively, then the parallelsthrough L, to Hy,H., L, to H.H,, and L. to H, H,

intersect the sidelines of triangle ABC' at the vertices of a Tucker hexagon (see
Figure 3)

2. The Tucker circle € (t)

Proposition 6. The vertices of the Tucker hexagon .7 (t) are concyclic. Thecircle
containing them has center L(¢) and radius R(t) given by
ot = 2t +v

R(t)? = 152 : 9)
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Figure 3. The Tucker circl& (¢)

Proof. Since the antiparallelB,C,, Cy Ay, A.B. have equal lengthsand are per-
pendicular to the circumradi® A, OB, OC respectively (see Figure 2), by Propo-
sition 4(b), each of the six vertices of the Tucker hexadb(t) is at a distance
R(t) from L(t) given by

R(1)? = <W>2+ <t>2: (M — 20/0)? + 4522

48 2 1652
(A2 +4SH)2 — ANt +4v 2 — vt +v
- 1652 - 452

O

We call the circumcircle of the Tucker hexagon(t) the Tucker circleé (t)
(see Figure 3).

Remark. If t = T\f, then the vertices of the Tucker hexagftit) are

Bo=A—712:0:7¢%) [ Cy = (A —7b%: 767 : 0)
Co=(1a®> : A—71a?:0) | Ay = (0: A — 7% : 7?)
Ac=(0:70%2: X —7b%) | B. = (1a® : 0: A — 1a?)

and the radius of the Tucker circ¥(¢) is given by

2
R(1) = | ((T _92R? 4 (T\f) ) . (10)
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3. Special Tucker circles

| Tucker circle | Parameter | Center | Radius \
First Lemoine circle t = % Ly = X(182) 1V/R*+ 12
Second Lemoine circle | t5 = Q‘Aﬁ Ly =K % =1
Third Lemoine circle tg = 3¢ Ly =2Ly— L, 1V/R*+ 13
Bui’s circle t3)2 = 32—; X(575) = 3Ly — Ly g\/im + t§/2
Apollonius circle t=—s X (970) 524?"2
Taylor circle % X (389) Proposition 7
Torres circle t=2 X (52) §3.4
Gallatly circle t= 0 X (39) S
First van Lamoen circle | t = % X(15) A+22ﬁ35
Second van Lamoen circlet = = | X(16) 2l
First Kenmotu circle t=20 | X(371) Afi\{g
Second Kenmotu circle | ¢t = 2% | X(372) V2yy

Table 1. Tucker circles

3.1 The Lemoine circles. The famous Lemoine circles are among the Tucker cir-
cles, with very simple parameters. In fact, foe= 1, 2, 3, then-th Lemoine circle
is the Tucker circle with parametéy = “¥~. Figure 4 shows the-th Lemoine

circles forn = 1,2, 3, along with the circumcircle, which may be regarded as a
Lemoine circle fom = 0.

Figure 4. The Lemoine circles for=0,1,2,3
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The vertices of the corresponding Lemoine hexagons are constrischeitbavs.

(1) B.1, Gy are the intercepts with the parallel &' through the symmedian
point K.

(2) Ba2, Cqp are the intercepts with the antiparallel &' through the sym-
median pointk..

(3) Ba3, Cq3 are the second intersections of the cirdeBC) with AC and
AB.

3.2 Bui'scircle. Q. T. Bui [1] has introduced a Tucker circle by considering the
three circles each passing through the symmedian goiahd tangent to the cir-
cumcircle at a vertex. Thus, the circle throughtangent to the circumcircle at
intersectsAC' and A B again atB. andC}, respectively (see Figure 5); similarly for
the other two circles leading G, A., andA,, B,.

Figure 5. Bui's circle

Ba = (2a® +2b> — % : 0:3¢?) | Cy = (2¢2 + 2a% — b2 : 3b? : 0)
Cp= (3a%:20> +2c —a? : 0) | Ay = (0: 2a% + 2b% — % : 36?)
Ao = (0:3b%:2c% +2a% — b?) | B. = (3a?,0,2b% + 2¢% — a?)

o , . /9 — 2)2
These six points lie on a Tucker circle with param%, radlusgﬂTR
and centetX (575) dividing OK in the ratio3 : 1. We call this Bui’s circle.

3.3 TheTaylor circle. For the Taylor hexagon, the intersection of two antiparallel
sides is the midpoint of the third side of the orthic triangle, (&.4;, and A.B.
intersect at the midpoin¥, of H, H.; similarly for the other two pairs (see Figure
6).

We establish a simple formula for the radius of the Taylor circle.
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Figure 6. The Taylor circle

Proposition 7. Theradius of the Taylor circleis

Rr = RV/sin? Asin? Bsin? C + cos? A cos? B cos? C.

Proof. The parameter of the Taylor hexagon being %, by Proposition 6, the
radiusRy of the Taylor circle is given by

2
w2 ﬂ(%) —Aﬁ<$>+”_ ju— AR) + 1614
r= 452 ~ Y TTI6RT 452
_ uRigr Mo 4R?\ + 16R* _ p— 4R+ 16 R*
16R% - 452 16R2
V2 + Pa® + a?b? — A + VP + )R+ 16R
B 16 R2 '

With a = 2Rsin A, b = 2R sin B, andc = 2R sin C, this becomes
R% = R?(sin® Bsin? C + sin? C'sin? A + sin”® Asin® B
— (sin? A +sin? B +sin?C) + 1)
= R%(sin® Asin® Bsin? C + (1 — sin? A)(1 — sin? B)(1 — sin C))
= R?(sin® Asin® Bsin? C + cos? Acos® Bcos? O).
([l
3.4. Torres' Tucker circle. Let A’, B/, C’ be the reflections ofi, B, C in their
own opposite sides. These are the points
A= (=a?: d®>+0*—c*: A +ad® 1),
B = (&> +0*—c%: —b?: b 42 —d?),
C'=(P+a>-0v: P+ —ad: =),
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The pedals ofd’, B’, C’ on the sidelines of triangld BC are the points
Pedal of on| coordinates

B, A AC | (a®b®* —25%: 0: 25?)
C, A AB| (cfa®—28%:25%:0)
C, B AB|(25%: b°c* —25%:0)
A, B’ BC | (0: a®b® —28%: 25?%)
A. C" BC|(0:28?: c?a®? —25?)
B. C' AC | (25%:0: b°c® —25?)

J. Torres [9] has shown that these are the vertices of a Tucker ¢rexagd the
center of the Tucker circle iX (52), the orthocenter of the orthic triangle. This is
the Tucker circles’ (%) (see Figure 7).

Figure 7. Torres’ Tucker circle

3.5 TheGallatly circle. From formula (9) for the radius of the Tucker cir&&t),
we note that the minimum &®(¢) occurs when = AQ—‘f From Table 1, this is the

parameter of the Gallatly circle, with cent&r(39), the midpoint of the Brocard
points. It follows that the Gallatly circle is themallest Tucker circle. It is the
common pedal circle of the Brocard points (see Figure 8).

Figure 8. The Gallatly circle
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3.6. van Lamoen’'s and Kenmotu'scircles. Van Lamoen [7] has explained the con-
struction of a Tucker hexagon given its center on the Brocard axisgi@uas
modifies this construction by using the rotations of the sidelines of trianglé’
about the center. Let the center be the isogonal conjugate of the Kpmpspec-
tor K(6). The rotations of the line8C, C A, AB aboutK (#)* by an angle2
intersect the line§’ A, AB, BC at the pointsB,, C,, A, respectively. From these
points the parallel ta&3C, C A, AB intersectAB, BC, CA at(y, A., B,. Then
B.,Cq, CyAy, A:B. are the antiparallels an8.Cy, C,A., Ay B, the parallels of
the Tucker hexagon with centéf(6)*.

Figure 9A. Tucker circle with centef, Figure 9B. Tucker circle with centef_

With § = ¢ - &, ¢ = &1, we obtain the two Tucker hexagons each centered at an
isodynamic point/. containing three congruent equilateral triangles (see Figures
9A, B).

3.7. Tucker circlesthrough the vertices. Fort = % we obtain thed-Tucker circle
passing through the vertek The vertices of thel-Tucker hexagory, are

Bi=(a?-c2:0:2)[C?=(a®> -b>:b%:0)
CP=(1:0:0) Al =(0:a*—c*:c?)
A2 =(0:b*:a>-0%) | B2=(1:0:0)

The segmentd Aj andAA? are the antiparallel segments. They have equal lengths
%. Therefore the center of thé-Tucker circle%, lies on theA-altitude of triangle
ABC (and the Brocard axi® K); see Figure 10. It is the point

L% = (2a%(25% — b2c%) : b2 (a® + 0% — 2) : b2 (2 + a® — b?)).

Likewise, there are thé- and C-Tucker circles passing through and C, with
centers on thé3- andC-altitudes respectively.
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Figure 10. TheA-Tucker circle

4. Congruent Tucker circles

Let € (t) and%(t') be distinct Tucker circles which are congruent. Writing

t = X* andt’ = T’—j\ﬁ for 7 # 7/, we have, by (10) in the Remark following
Proposition 6,

/
(r+7 —4)R* + U4 J;;  _o.
From this,
4AR? AR? 4)\2 42 N2
T + 7'/ = = = = — = —,
R? + 3% R2_|_41§# A2 4+482  Ap p

Figure 11. Congruent Tucker circles
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Proposition 8. The Tucker circles %'(t) and €' (t') are congruent if and only if
MY
o

Corollary 9. Two Tucker circles are congruent if and only if they are symmetric
with respect to the line joining the Brocard points (see Figure 11)

t+t =

5. Orthogonal and tangential Tucker circles
Proposition 10. The distance L(t,t') between the centers of the Tucker circles
¢ (t) and €' (t') isgiven by

1
LUJ@2:i§ﬂﬂ—tyM2—3m.

Proof. The length of the segmenitK is given by

COS“ W
wherew is the Brocard angle satisfyingn?w = 52: see [5, Theorems 435 and

450]. Therefore, g

o2 =45 v (=4S (p—(p =N (N =3uv

p—S% 452 482(u— S?) 52. )2 BEEPY

By Proposition 4(a)/.(t) and L(t') divide OK in the ratiosQ% 11— 2% and
2:;% : 1 — 5 respectively, the distancg(t, ') = 57-(# — t) - OK. It follows
that

2 _ N
4y

A2 — 3u)v 1
' —1)%- A" = 3wy o )\2) = g "—1)?(\* - 3p).

L(t,t)
5.1 Orthogonal Tucker circles.

Proposition 11. Thereare k = 0, 1, 2 Tucker circles orthogonal to a given Tucker
circle ¢'(t) according as

F = (2X% — 7)) (2ut — \W)? — 2(4p — AH)?v
is negative, zero, or positive.
Proof. The Tucker circleg(t') is orthogonal ta¢’(¢) if and only if
R(t)* + R(t)* = L(t, )2
This is equivalent to
(ut? = \Wot +v) + (ut’? = \Wot' +v) = (A2 = 3p)(t' —t)?
Written as a quadratic equatioh
(4p — 2Nt + (2007 = 3u)t — WD)t 4 ((4p — N2)t2 — A\/ut + 2v) =0,
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this has discriminant given by
(2(\% = 3p)t — AV1)? — 4(4p — N*)((4p — N2 — \ut + 2v)
= 4pu(20\ — Tu)t? — AND(202 — Tp)t + (9N — 32u)v
4(20% — Tp)(ut? — MWt +v) — (4p — N
(2% = 7p) (2pt — A\Wv)* = 2(4p — N*)*v
. :
From this the result follows. O

Corollary 12. Thereisno Tucker circle orthogonal to the Gallatly circle.

Proof. For the Gallatly circle witht = Agf, the discriminant in Proposition 11 is

F=-2(4p - X)%v < 0. a

Figure 12. Two Tucker circles orthogonal to the cirucmcircle of(thet, 5) triangle

Remark. For the circumcirclet’ = 0. A Tucker circle of parametéris orthogonal
to the circumcircle if and only if

(4 — N)t2 — X\ vt +2v = 0.
This has discriminank®v — 8(4u — A2)v = (9A2 — 32u)v. Apart fromu, this is
d(a,b,c) := 9(a* + bt + ¢*) — 14(b?? + 2a® + a?b?).

Sinced(2, 3,4) < 0, there is no Tucker circle orthogonal to the cirumcircle of the
(2,3,4)-triangle. On the other hand(2,4,5) > 0. There are two Tucker circles
orthogonal to the circumcircle of the, 4, 5)-triangle; see Figure 12.
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5.2 Tangential Tucker circles.

Proposition 13. If triangle ABC' is non-equilateral, there are always two Tucker
circles tangent to a given Tucker circle €(t).

Proof. The Tucker circleg’(t') is tangent to¢’(t) if and only if
(R()+R(H)—L(t, ") (R(t) —RE)— L(t,t"))(=R(t) +R(t') — L(¢,t')) = 0.
Multiplying by R(¢) + R(t') + L(t,t") > 0, and simplifying, we have
2R(1)’R()* + 2(R(t)* + R(Y)?)L(t,t')* = R(t)* — R(t)* — L(t,t)* = 0.
This is — =2 times
(4 — A2+ 2((N% = 2u)t — W)Y + ((4p — N2)t2 — 20/wt + 3v).
This latter quadratic i’ has leading coefficienty — A\? # 0 and discriminant
4((A% = 2u)t — AWD)2 — 4(4p — N2 ((4p — N2 — 20/vt + 3v)
= 16(\? — 3p) (ut* — \vt +v)
= 16(\% — 3u) - 45*R(t)?
>0

sinceA? — 3u > 0 (by Lemma 1(b)) andR(t) > 0 for everyt. Therefore, there
are always two distinct Tucker circles tangent to a giv&i). O

For the circumcircle ofABC' corresponding t@ = 0, the two tangent Tucker
circles have parameters

t,_)\:I:Q\/)\2—3u 1/

4y — N2 ’

see Figure 13.

Figure 13. Tucker circles tangent to the circumcircle
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6. The envelope of the Tucker circles

Proposition 14. The barycentric equation of the Tucker circle € (t) is

b
?y+az)t+u+y+@%2:0
C

(11)

bc
(a®yz+ b2z 4 ay) — (x+y+2) (aa: +

Proof. From the homogeneous barycentric coordinates of the vertice® (of
given in (1), we determine the equation of the Tucker circle in the form

a?yz+ b2z + oy — (x4 y+ 2)(pr+qy+rz) =0

wherep, ¢, r are constants. In facp, ¢, r are respectively the powers df B, C
relative to the Tucker circle. This means

ct bc — at t(bc — at)
= AB, - AB.= (b-Z) (b- _we—ay
P ( ab> ( be > a

and similarlyq = 1<%=") and, = 12=<) Therefore, the equation of the Tucker
circle is
9 9 9 be ca ab
a“yz+b zao+ctry—(z+y+2)t | | — —t |z + (— - t) y+|(——t]z|=0.
a b c
This can be easily rearranged to give equation (11) above. O

Corollary 15. The radical axis of two distinct Tucker circles is parallel to the
Lemoine axis.

Proof. Since the centers of Tucker circles are on the Brocard@Xis the radical
axis of any two distinct Tucker circle is a line perpendiculaétf, and is parallel
to the Lemoine axis. O

Theorem 16. The envelope of the Tucker circlesisthe Brocard ellipse.

Proof. The equation of the envelopeds = 0, whereA is the discriminant of the
quadratic int given in (11):

b b \?
A= <cx + %y + az) — 4(a®yz + b2z + Fay)
a C

bicta? + craty? 4 abt2? — 2a*b?Pyz — 2020 P zr — 2a2b oy

a?b?c? '
The equatiom\ = 0 represents the Brocard inellipse with foci at the two Brocard
points, tangent to the sides of triangleBC' at the traces oK, and has center at
the midpoint of the Brocard points (see Figure 14). O
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Figure 14. The envelope of Tucker circles

7. Orthology

Consider the two triangles formed by
(i) the midpoints of the segmentg§ A., B.B,, C,C} along the sidelines of triangle
ABC"

"= (0:abc+ (b? — )t : abe — (b — A)t),
(abc — (¢ — a®)t : 0 : abe + (¢* — a®)t),
(abe + (a® — bt : abe — (a® — bt : 0),

QW

!

and
(i) the midpoints of the parallel sideB.C, C, A., Ay B, of the Tucker hexagon
T (t):

A" = (2at : be — at : be — at),

B" = (ca— bt : 2bt : ca — bt),

C" = (ab—ct:ab—ct:2ct).

Since the perpendiculars from these midpoints to the sidelines of triahgIe
are concurrent ak(¢), the center of the Tucker circle, each of the triangléB’C’
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and A" B"C" is orthologic to triangleABC' at L(t). We determine the other two
orthology centers.

Proposition 17. The perpendiculars from A to B'C’, Bto C'A’, and C to A’B’
are concurrent at the isogonal conjugate of L(t).

Proof. The quadrilateradC’L(t) B’ is cyclic with AL(t) as a diameter. Hence
the perpendicular froml to B’C’ passes through the isogonal conjugatd. ¢f’)
because it is thel-altitude of triangleA B’C’. Hence this perpendicular is isogonal
to the A-diameter of AB'C’ that is the lineAL(t). Similarly the perpendiculars
from B, C'to C'A’, A’ B’ pass through the isogonal conjugate ¢f). O

Figure 15. B'C’ and its reflection in thel-bisector

It follows from (8) that the isogonal conjugate bft) is the point

/ ]' . .
@)= <abc(b2+02—a2)+t(a2(b2+62)—(b4+c4)) S )

Proposition 18. The perpendicularsfrom Ato B”C”, BtoC"” A”,and C to A” B”
are concurrent at theisogonal conjugate of the harmonic conjugate of L(t) in OK
(see Figure 16)

Proof. The lineB”C” has barycentric equation
(—a*be + a(b? + )t + 3bet?)x
+ (ca — bt)(ab — 3ct)y + (ab — ct)(ca — 3bt)z = 0,
and the perpendicular from to this line is

(b(ca — bt)(c* 4 a® — b%) — 2c%a®t)y — (c(ab — ct)(a® + b* — %) — 2a*b°t)z = 0;
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A NN
N AN

I
Figure 16. Orthology of midpoint triangle of parallel sides of Tuckerdgmn

similarly for the other two perpendiculars. The three perpendicularsoaicrent
at

Q"(t) = <abc(b2 Fc2—a?)— t(a;(bQ TR T S > _
This is the isogonal conjugate of the point
(a2(abc(b2 4 a2) _ t(a2(62 L a2) X 2b202)) ),
Now,
(a®(abe(b? + ¢ — a?) — t(a® (B + & — a®) + 20%2)),...,...)
= % ((2abe — (a® + b* + )t)(a®(V* + ¢* — a?), -+, -+ ) — 45%t(a?, b%, %))

= 257 ((2/v — M)O — XtK) .

These are the homogeneous barycentric coordinates of the point omabard
axis dividingOK in the ratio—At : 2¢/v — A\t = —7 : 2 — 7. This is the har-
monic conjugate of.(¢) in OK; see Figure 16, where the harmonic conjugate of
L = L(t) is indicated byL. Therefore, the orthology cent&)’ (t) is the isogonal
conjugate of the harmonic conjugatelaft) in OK. O
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