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On the Tucker Circles

Sándor Nagydobai Kiss and Paul Yiu

Abstract. Parametrizing Tucker circles by the lengths of their antiparallel sides,
we find conditions for which Tucker circles are congruent, orthogonal,or tangen-
tial. In particular, we show that the Gallatly circle, which is the common pedal
circle of the Brocard points, is the smallest Tucker circle, not orthogonal to any
Tucker circle, and congruent Tucker circles are symmetric with respect to the
line joining the Brocard points. Some orthology results are also obtained.

1. The Tucker hexagon T (t)

Given triangleABC, letBa andCa be points on the sidelinesAC andAB such
that triangleABaCa is oppositely similar toABC. The lineBaCa is antiparal-
lel to BC, meaning thatBaCa is parallel to the sideHbHc of the orthic triangle
HaHbHc of triangleABC (see Figure 1). Thus, we have through
Ba the antiparallel toBC to intersectAB atCa. Continue to construct through
Ca the parallel toCA to intersectBC atAc, then through
Ac the antiparallel toAB to intersectCA atBc, then through
Bc the parallel toBC to intersectAB atCb, then through
Cb the antiparallel toCA to intersectBC atAb, then through
Ab the parallel toAB to intersect the lineCA.
This last intersection is the same as the pointBa, thus completing a hexagon
BaCaAcBcCbAb whose sides are alternately antiparallel and parallel to the sides
of triangleABC. This is called a Tucker hexagon.

Let a, b, c be the lengths of the sidesBC, CA, AB of triangleABC, andR
its circumradius. SupposeBaCa = t, positive or negative according asBa and
Ca are on the half-linesAC andAB or their complementary half-lines. Then
ACa = bt

a
, ABa = ct

a
. It follows that BAb = ct

b
, BCb = at

b
, CAc = bt

c
,

CBc = at
c

. TrianglesAbBCb andAcBcC are also oppositely similar toABC.
Also,BaCa = CbAb = AcBc = t. The three antiparallel sides ofT (t) have equal
lengthst. With reference to triangleABC, the vertices of the Tucker hexagon
T (t) have homogeneous barycentric coordinates

Ba = (ab− ct : 0 : ct) Ca = (ca− bt : bt : 0)
Cb = (at : bc− at : 0) Ab = (0 : ab− ct : ct)
Ac = (0 : bt : ca− bt) Bc = (at : 0 : bc− at)

(1)

We shall also make use of theabsolute barycentric coordinates of finite points by
normalizing their homogeneous coordinates, i.e., by dividing by their coordinate
sum.
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Figure 1. A Tucker hexagon

It is convenient to make use of the elementary symmetric functions ofa2, b2, c2:

λ := a2 + b2 + c2, µ := b2c2 + c2a2 + a2b2, ν := a2b2c2. (2)

We shall also denote byS twice the area of triangleABC.
In absolute barycentric coordinates, the circumcenter and the symmedian point

of triangleABC are the points

O =
1

4S2
(a2(λ− 2a2), b2(λ− 2b2), c2(λ− 2c2)), (3)

K =
1

λ
(a2, b2, c2). (4)

Lemma 1. (a)4µ− λ2 = 4S2.
(b) λ2 − 3µ ≥ 0.

Proof. (a)

4µ− λ2 = 2b2c2 + 2c2a2 + 2a2b2 − a4 − b4 − c4

= (a+ b+ c)(b+ c− a)(c+ a− b)(a+ b− c)

= 4S2.

(b)

λ2 − 3µ = a4 + b4 + c4 − b2c2 − c2a2 − a2b2

=
1

2

(

(b2 − c2)2 + (c2 − a2)2 + (a2 − b2)2
)

.

�

Proposition 2. The midpoints La, Lb, Lc of the antiparallel sides of T (t) are
on the symmedians AK, BK, CK respectively, and divide AK, BK, CK in the
same ratio

ALa : LaK = BLb : LbK = CLc : LcK = λt : 2
√
ν − λt (5)



On the Tucker Circles 159

Proof. The midpoint of the antiparallel sideBaCa is

La =
1

2
(Ba + Ca)

=
1

2abc
(2abc− (b2 + c2)t, b2t, c2t)

=
1

2
√
ν

(

(2
√
ν − λt, 0, 0) + (a2t, b2t, c2t)

)

=
1

2
√
ν
(2
√
ν − λt)A+ λtK). (6)

This shows thatLa is a point on the symmedianAK, and it dividesAK in the ratio
ALa : LaK = λt : 2

√
ν − λt (see Figure 2).

The same is true forLb andLc. �
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Figure 2

Proposition 3. (a) The triangles ABC and LaLbLc are homothetic at the symme-
dian point K.

(b) They are also orthologic.
(i) The perpendiculars from A to LbLc, B to LcLa, and C to LaLb are con-

current at the orthocenter H .
(ii) The perpendiculars from La to BC, Lb to CA, and Lc to AB are concur-

rent at the point Q dividing HK in the ratio HQ(t) : Q(t)K = λt : 2
√
ν − λt.

Proof. (a) follows from (5).
(b) The orthology follows from the homothety.

(i) is clear.
(ii) The perpendicular fromLa to BC, being parallel toAH, intersectsHK at a
pointQ(t) such thatHQ(t) : Q(t)K = ALa : LaK = λt : 2

√
ν − λt (see Figure

2). By Proposition 2, the perpendiculars fromLb to CA andLc to AB intersect
HK at the same pointQ(t). �
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Proposition 4. (a) The perpendicular bisectors of the antiparallel sides BaCa,
CbAb, AcBc of the Tucker hexagon T (t) are concurrent at the point L(t) dividing
OK in the ratio

OL(t) : L(t)K = λt : 2
√
ν − λt.

(b) The point L(t) is at a distance 2
√
ν−λt
4S from each of the antiparallels.

Proof. (a) From (6) it follows that

2
√
νLa + (λt− 2

√
ν)A = λtK,

and
2
√
νLa + (λt− 2

√
ν)(A−O) = (2

√
ν − λt)O + λtK.

This means that the parallel throughLa to OA intersectsOK at a pointL(t) di-
vidingOK in the ratio

OL(t) : L(t)K = λt : 2
√
ν − λt; (7)

see Figure 2. Since the coefficients are all symmetric functions ofa2, b2, c2, the
analogues of (7) hold whenLa, A are replaced byLb, B, andLc, C respectively.
This means that the parallels throughLa, Lb, Lc to OA, OB, OC are concurrent
at the same pointL(t) (see Figure 3).

(b) The antiparallel sideBaCa, being parallel to the sideHbHc of the orthic
triangle, is perpendicular to the circumradiusOA. Equation (7) shows thatL(t) is
at a distance

(

1− λt

2
√
ν

)

·R =
2
√
ν − λt

2
√
ν

·
√
ν

2S
=

2
√
ν − λt

4S

fromBaCa. This is the same for the antiparallelsCbAb andAcBc. �

Remark. In homogeneous barycentric coordinates,

L(t) = (a2(abc(b2 + c2 − a2) + t(a2(b2 + c2)− (b4 + c4))

: b2(abc(c2 + a2 − b2) + t(b2(c2 + a2)− (c4 + a4))

: c2(abc(a2 + b2 − c2) + t(c2(a2 + b2)− (a4 + b4))). (8)

Corollary 5 (Construction of Tucker hexagon). Let HaHbHc be the orthic triangle
of ABC, and L a point on the Brocard axis. If the parallels through L to the
circumradii OA, OB, OC intersect the symmedians AK, BK, CK at La, Lb, Lc

respectively, then the parallels through La to HbHc, Lb to HcHa, and Lc to HaHb

intersect the sidelines of triangle ABC at the vertices of a Tucker hexagon (see
Figure 3).

2. The Tucker circle C (t)

Proposition 6. The vertices of the Tucker hexagon T (t) are concyclic. The circle
containing them has center L(t) and radius R(t) given by

R(t)2 =
µt2 − λ

√
νt+ ν

4S2
. (9)
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Figure 3. The Tucker circleC (t)

Proof. Since the antiparallelsBaCa, CbAb, AcBc have equal lengthst and are per-
pendicular to the circumradiiOA, OB, OC respectively (see Figure 2), by Propo-
sition 4(b), each of the six vertices of the Tucker hexagonT (t) is at a distance
R(t) fromL(t) given by

R(t)2 =

(

λt− 2
√
ν

4S

)2

+

(

t

2

)2

=
(λt− 2

√
ν)2 + 4S2t2

16S2

=
(λ2 + 4S2)t2 − 4λ

√
νt+ 4ν

16S2
=

µt2 − λ
√
νt+ ν

4S2
.

�

We call the circumcircle of the Tucker hexagonT (t) the Tucker circleC (t)
(see Figure 3).

Remark. If t = τ
√
ν

λ
, then the vertices of the Tucker hexagonT (t) are

Ba = (λ− τc2 : 0 : τc2) Ca = (λ− τb2 : τb2 : 0)
Cb = (τa2 : λ− τa2 : 0) Ab = (0 : λ− τc2 : τc2)
Ac = (0 : τb2 : λ− τb2) Bc = (τa2 : 0 : λ− τa2)

and the radius of the Tucker circleC (t) is given by

R(t)2 =
1

4

(

(τ − 2)2R2 +

(

τ
√
ν

λ

)2
)

. (10)
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3. Special Tucker circles

Tucker circle Parameter Center Radius

First Lemoine circle t1 =
√
ν
λ L1 = X(182) 1

2

√

R2 + t21

Second Lemoine circle t2 = 2
√
ν

λ L2 = K
√
ν
λ = t1

Third Lemoine circle t3 = 3
√
ν

λ L3 = 2L2 − L1
1
2

√

R2 + t23

Bui’s circle t3/2 = 3
√
ν

2λ X(575) = 3
2L2 − L1

1
2

√

1
4R

2 + t23/2

Apollonius circle t = −s X(970) s2+r2

4r

Taylor circle t = S
2R X(389) Proposition 7

Torres circle t = S
R X(52) §3.4

Gallatly circle t = λ
√
ν

2µ X(39)
√
ν

2
√
µ

First van Lamoen circle t = 2
√
ν

λ+2
√
3S

X(15) 2
√
ν

λ+2
√
3S

Second van Lamoen circlet = 2
√
ν

λ−2
√
3S

X(16) 2
√
ν

λ−2
√
3S

First Kenmotu circle t = 2
√
ν

λ+2S X(371)
√
2
√
ν

λ+2S

Second Kenmotu circle t = 2
√
ν

λ−2S X(372)
√
2
√
ν

λ−2S

Table 1. Tucker circles

3.1. The Lemoine circles. The famous Lemoine circles are among the Tucker cir-
cles, with very simple parameters. In fact, forn = 1, 2, 3, then-th Lemoine circle
is the Tucker circle with parametertn = n

√
ν

λ
. Figure 4 shows then-th Lemoine

circles forn = 1, 2, 3, along with the circumcircle, which may be regarded as a
Lemoine circle forn = 0.

A

B C

H

O

K

Bc,2

Ac,2 Ab,2

Ba,2

Cb,2

Ca,2

Ca,1

Ac,1

Bc,1

Ba,1

Ab,1

Cb,1

Bc,3

Ac,3

Ba,3

Ca,3

Ab,3

Cb,3

Figure 4. The Lemoine circles forn = 0, 1, 2, 3
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The vertices of the corresponding Lemoine hexagons are constructed as follows.

(1) Bc,1,Cb,1 are the intercepts with the parallel toBC through the symmedian
pointK.

(2) Ba,2, Ca,2 are the intercepts with the antiparallel toBC through the sym-
median pointK.

(3) Ba,3, Ca,3 are the second intersections of the circle(KBC) with AC and
AB.

3.2. Bui’s circle. Q. T. Bui [1] has introduced a Tucker circle by considering the
three circles each passing through the symmedian pointK and tangent to the cir-
cumcircle at a vertex. Thus, the circle throughK tangent to the circumcircle atA
intersectsAC andAB again atBc andCb respectively (see Figure 5); similarly for
the other two circles leading toCa, Ac, andAb, Ba.

A

B C

K

H

O

Oa

Oc
Ob

Cb
Ca

Ba

Bc

AbAc

Figure 5. Bui’s circle

Ba = (2a2 + 2b2 − c2 : 0 : 3c2) Ca = (2c2 + 2a2 − b2 : 3b2 : 0)
Cb = (3a2 : 2b2 + 2c2 − a2 : 0) Ab = (0 : 2a2 + 2b2 − c2 : 3c2)
Ac = (0 : 3b2 : 2c2 + 2a2 − b2) Bc = (3a2, 0, 2b2 + 2c2 − a2)

These six points lie on a Tucker circle with parameter3
√
ν

2λ , radius

√

9µ− 2λ2

2λ
R,

and centerX(575) dividingOK in the ratio3 : 1. We call this Bui’s circle.

3.3. The Taylor circle. For the Taylor hexagon, the intersection of two antiparallel
sides is the midpoint of the third side of the orthic triangle, i.e.,CbAb andAcBc

intersect at the midpointMa of HbHc; similarly for the other two pairs (see Figure
6).

We establish a simple formula for the radius of the Taylor circle.
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Figure 6. The Taylor circle

Proposition 7. The radius of the Taylor circle is

RT = R
√

sin2A sin2B sin2C + cos2A cos2B cos2C.

Proof. The parameter of the Taylor hexagon beingt =
√
ν

4R2 , by Proposition 6, the
radiusRT of the Taylor circle is given by

R2
T =

µ
( √

ν

4R2

)2
− λ

√
ν
( √

ν

4R2

)

+ ν

4S2
= ν · µ− 4R2λ+ 16R4

16R4 · 4S2

= 4R2S2 · µ− 4R2λ+ 16R4

16R4 · 4S2
=

µ− 4R2λ+ 16R4

16R2

=
b2c2 + c2a2 + a2b2 − 4(a2 + b2 + c2)R2 + 16R4

16R2
.

With a = 2R sinA, b = 2R sinB, andc = 2R sinC, this becomes

R2
T = R2(sin2B sin2C + sin2C sin2A+ sin2A sin2B

− (sin2A+ sin2B + sin2C) + 1)

= R2(sin2A sin2B sin2C + (1− sin2A)(1− sin2B)(1− sin2C))

= R2(sin2A sin2B sin2C + cos2A cos2B cos2C).

�

3.4. Torres’ Tucker circle. Let A′, B′, C ′ be the reflections ofA, B, C in their
own opposite sides. These are the points

A′ = (−a2 : a2 + b2 − c2 : c2 + a2 − b2),

B′ = (a2 + b2 − c2 : −b2 : b2 + c2 − a2),

C ′ = (c2 + a2 − b2 : b2 + c2 − a2 : −c2).
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The pedals ofA′, B′, C ′ on the sidelines of triangleABC are the points

Pedal of on coordinates
Ba A′ AC (a2b2 − 2S2 : 0 : 2S2)
Ca A′ AB (c2a2 − 2S2 : 2S2 : 0)
Cb B′ AB (2S2 : b2c2 − 2S2 : 0)
Ab B′ BC (0 : a2b2 − 2S2 : 2S2)
Ac C ′ BC (0 : 2S2 : c2a2 − 2S2)
Bc C ′ AC (2S2 : 0 : b2c2 − 2S2)

J. Torres [9] has shown that these are the vertices of a Tucker hexagon, and the
center of the Tucker circle isX(52), the orthocenter of the orthic triangle. This is
the Tucker circleC

(

S
R

)

(see Figure 7).
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X(52)
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O

H

Figure 7. Torres’ Tucker circle

3.5. The Gallatly circle. From formula (9) for the radius of the Tucker circleC (t),

we note that the minimum ofR(t) occurs whent = λ
√
ν

2µ . From Table 1, this is the
parameter of the Gallatly circle, with centerX(39), the midpoint of the Brocard
points. It follows that the Gallatly circle is thesmallest Tucker circle. It is the
common pedal circle of the Brocard points (see Figure 8).
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Figure 8. The Gallatly circle
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3.6. van Lamoen’s and Kenmotu’s circles. Van Lamoen [7] has explained the con-
struction of a Tucker hexagon given its center on the Brocard axis. Dergiades
modifies this construction by using the rotations of the sidelines of triangleABC

about the center. Let the center be the isogonal conjugate of the Kiepertperspec-
tor K(θ). The rotations of the linesBC, CA, AB aboutK(θ)∗ by an angle2θ
intersect the linesCA, AB, BC at the pointsBc, Ca, Ab respectively. From these
points the parallel toBC, CA, AB intersectAB, BC, CA atCb, Ac, Ba. Then
BaCa, CbAb, AcBc are the antiparallels andBcCb, CaAc, AbBa the parallels of
the Tucker hexagon with centerK(θ)∗.

A

B
C

J+

Ca

Ab

Bc

Ba

Ac

Cb

Figure 9A. Tucker circle with centerJ+

C

A

B

J−

Bc

Ca

Ab

Cb

Ac
Ba

Figure 9B. Tucker circle with centerJ−

With θ = ε · π6 , ε = ±1, we obtain the two Tucker hexagons each centered at an
isodynamic pointJε containing three congruent equilateral triangles (see Figures
9A, B).

3.7. Tucker circles through the vertices. For t = bc
a

, we obtain theA-Tucker circle
passing through the vertexA. The vertices of theA-Tucker hexagonTa are

Ba
a = (a2 − c2 : 0 : c2) Ca

a = (a2 − b2 : b2 : 0)
Ca
b = (1 : 0 : 0) Aa

b = (0 : a2 − c2 : c2)
Aa

c = (0 : b2 : a2 − b2) Ba
c = (1 : 0 : 0)

The segmentsAAa
b andAAa

c are the antiparallel segments. They have equal lengths
bc
a

. Therefore the center of theA-Tucker circleCa lies on theA-altitude of triangle
ABC (and the Brocard axisOK); see Figure 10. It is the point

La = (2a2(2S2 − b2c2) : b2c2(a2 + b2 − c2) : b2c2(c2 + a2 − b2)).

Likewise, there are theB- andC-Tucker circles passing throughB andC, with
centers on theB- andC-altitudes respectively.
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Figure 10. TheA-Tucker circle

4. Congruent Tucker circles

Let C (t) and C (t′) be distinct Tucker circles which are congruent. Writing

t = τ
√
ν

λ
and t′ = τ ′

√
ν

λ
for τ 6= τ ′, we have, by (10) in the Remark following

Proposition 6,

(τ + τ ′ − 4)R2 +
(τ + τ ′)ν

λ2
= 0.

From this,

τ + τ ′ =
4R2

R2 + ν
λ2

=
4R2

R2 + 4R2S2

λ2

=
4λ2

λ2 + 4S2
=

4λ2

4µ
=

λ2

µ
.

Equivalently,t+ t′ =
λ
√
ν

µ
.

A

B C

Ω

Ω′

Ba

Ca

Ac

BcCb

Ab A′

bA′

c

B′

a

B′

c

C′

a

C′

b

L
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Figure 11. Congruent Tucker circles
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Proposition 8. The Tucker circles C (t) and C (t′) are congruent if and only if

t+ t′ =
λ
√
ν

µ
.

Corollary 9. Two Tucker circles are congruent if and only if they are symmetric
with respect to the line joining the Brocard points (see Figure 11).

5. Orthogonal and tangential Tucker circles

Proposition 10. The distance L(t, t′) between the centers of the Tucker circles
C (t) and C (t′) is given by

L(t, t′)2 =
1

4S2
(t′ − t)2(λ2 − 3µ).

Proof. The length of the segmentOK is given by

OK2 =
1− 4 sin2 ω

cos2 ω
·R2

whereω is the Brocard angle satisfyingsin2 ω = S2

µ
; see [5, Theorems 435 and

450]. Therefore,

OK2 =
µ− 4S2

µ− S2
· ν

4S2
=

(µ− 4S2)ν

4S2(µ− S2)
=

(µ− (4µ− λ2))ν

S2 · λ2
=

(λ2 − 3µ)ν

S2 · λ2
.

By Proposition 4(a),L(t) andL(t′) divideOK in the ratios λt
2
√
ν
: 1− λt

2
√
ν

and
λt′

2
√
ν
: 1 − λt′

2
√
ν

respectively, the distanceL(t, t′) = λ
2
√
ν
(t′ − t) · OK. It follows

that

L(t, t′)2 =
λ2

4ν
(t′ − t)2 · (λ

2 − 3µ)ν

S2 · λ2
=

1

4S2
(t′ − t)2(λ2 − 3µ).

�

5.1. Orthogonal Tucker circles.

Proposition 11. There are k = 0, 1, 2 Tucker circles orthogonal to a given Tucker
circle C (t) according as

F := (2λ2 − 7µ)(2µt− λ
√
ν)2 − 2(4µ− λ2)2ν

is negative, zero, or positive.

Proof. The Tucker circleC (t′) is orthogonal toC (t) if and only if

R(t′)2 +R(t)2 = L(t, t′)2.

This is equivalent to

(µt2 − λ
√
νt+ ν) + (µt′2 − λ

√
νt′ + ν) = (λ2 − 3µ)(t′ − t)2.

Written as a quadratic equationt′:

(4µ− λ2)t′2 + (2(λ2 − 3µ)t− λ
√
ν)t′ + ((4µ− λ2)t2 − λ

√
νt+ 2ν) = 0,
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this has discriminant given by

(2(λ2 − 3µ)t− λ
√
ν)2 − 4(4µ− λ2)((4µ− λ2)t2 − λ

√
νt+ 2ν)

= 4µ(2λ2 − 7µ)t2 − 4λ
√
ν(2λ2 − 7µ)t+ (9λ2 − 32µ)ν

= 4(2λ2 − 7µ)(µt2 − λ
√
νt+ ν)− (4µ− λ2)ν

=
(2λ2 − 7µ)(2µt− λ

√
ν)2 − 2(4µ− λ2)2ν

µ
.

From this the result follows. �

Corollary 12. There is no Tucker circle orthogonal to the Gallatly circle.

Proof. For the Gallatly circle witht = λ
√
ν

2µ , the discriminant in Proposition 11 is

F = −2(4µ− λ2)2ν < 0. �

C

B AO

Figure 12. Two Tucker circles orthogonal to the cirucmcircle of the(2, 4, 5) triangle

Remark. For the circumcircle,t′ = 0. A Tucker circle of parametert is orthogonal
to the circumcircle if and only if

(4µ− λ2)t2 − λ
√
νt+ 2ν = 0.

This has discriminantλ2ν − 8(4µ− λ2)ν = (9λ2 − 32µ)ν. Apart fromν, this is

d(a, b, c) := 9(a4 + b4 + c4)− 14(b2c2 + c2a2 + a2b2).

Sinced(2, 3, 4) < 0, there is no Tucker circle orthogonal to the cirumcircle of the
(2, 3, 4)-triangle. On the other hand,d(2, 4, 5) > 0. There are two Tucker circles
orthogonal to the circumcircle of the(2, 4, 5)-triangle; see Figure 12.
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5.2. Tangential Tucker circles.

Proposition 13. If triangle ABC is non-equilateral, there are always two Tucker
circles tangent to a given Tucker circle C (t).

Proof. The Tucker circleC (t′) is tangent toC (t) if and only if

(R(t)+R(t′)−L(t, t′))(R(t)−R(t′)−L(t, t′))(−R(t)+R(t′)−L(t, t′)) = 0.

Multiplying by R(t) +R(t′) + L(t, t′) > 0, and simplifying, we have

2R(t)2R(t′)2 + 2(R(t)2 +R(t′)2)L(t, t′)2 −R(t)4 −R(t′)4 − L(t, t′)4 = 0.

This is− (4µ−λ2)(t−t′)2

16S4 times

(4µ− λ2)t′2 + 2((λ2 − 2µ)t− λ
√
ν)t′ + ((4µ− λ2)t2 − 2λ

√
νt+ 3ν).

This latter quadratic int′ has leading coefficient4µ− λ2 6= 0 and discriminant

4((λ2 − 2µ)t− λ
√
ν)2 − 4(4µ− λ2)((4µ− λ2)t2 − 2λ

√
νt+ 3ν)

= 16(λ2 − 3µ)(µt2 − λ
√
νt+ ν)

= 16(λ2 − 3µ) · 4S2R(t)2

> 0

sinceλ2 − 3µ > 0 (by Lemma 1(b)) andR(t) > 0 for everyt. Therefore, there
are always two distinct Tucker circles tangent to a givenC (t). �

For the circumcircle ofABC corresponding tot = 0, the two tangent Tucker
circles have parameters

t′ =
λ± 2

√

λ2 − 3µ

4µ− λ2

√
ν;

see Figure 13.

A

B C

Figure 13. Tucker circles tangent to the circumcircle
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6. The envelope of the Tucker circles

Proposition 14. The barycentric equation of the Tucker circle C (t) is

(a2yz+ b2zx+ c2xy)− (x+y+z)

(

bc

a
x+

ca

b
y +

ab

c
z

)

t+(x+y+z)2t2 = 0.

(11)

Proof. From the homogeneous barycentric coordinates of the vertices ofT (t)
given in (1), we determine the equation of the Tucker circle in the form

a2yz + b2zx+ c2xy − (x+ y + z)(px+ qy + rz) = 0

wherep, q, r are constants. In fact,p, q, r are respectively the powers ofA, B, C
relative to the Tucker circle. This means

p = ABa ·ABc =

(

b · ct
ab

)(

b · bc− at

bc

)

=
t(bc− at)

a
,

and similarlyq = t(ca−bt)
b

andr = t(ab−ct)
c

. Therefore, the equation of the Tucker
circle is

a2yz+b2zx+c2xy−(x+y+z)t

((

bc

a
− t

)

x+
(ca

b
− t
)

y +

(

ab

c
− t

)

z

)

= 0.

This can be easily rearranged to give equation (11) above. �

Corollary 15. The radical axis of two distinct Tucker circles is parallel to the
Lemoine axis.

Proof. Since the centers of Tucker circles are on the Brocard axisOK, the radical
axis of any two distinct Tucker circle is a line perpendicular toOK, and is parallel
to the Lemoine axis. �

Theorem 16. The envelope of the Tucker circles is the Brocard ellipse.

Proof. The equation of the envelope is∆ = 0, where∆ is the discriminant of the
quadratic int given in (11):

∆ =

(

bc

a
x+

ca

b
y +

ab

c
z

)2

− 4(a2yz + b2zx+ c2xy)

=
b4c4x2 + c4a4y2 + a4b4z2 − 2a4b2c2yz − 2a2b4c2zx− 2a2b2c4xy

a2b2c2
.

The equation∆ = 0 represents the Brocard inellipse with foci at the two Brocard
points, tangent to the sides of triangleABC at the traces ofK, and has center at
the midpoint of the Brocard points (see Figure 14). �
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A

B C

K

O

Ω′

Ω

Figure 14. The envelope of Tucker circles

7. Orthology

Consider the two triangles formed by
(i) the midpoints of the segmentsAbAc,BcBa,CaCb along the sidelines of triangle
ABC:

A′ = (0 : abc+ (b2 − c2)t : abc− (b2 − c2)t),

B′ = (abc− (c2 − a2)t : 0 : abc+ (c2 − a2)t),

C ′ = (abc+ (a2 − b2)t : abc− (a2 − b2)t : 0),

and
(ii) the midpoints of the parallel sidesBcCb, CaAc, AbBa of the Tucker hexagon
T (t):

A′′ = (2at : bc− at : bc− at),

B′′ = (ca− bt : 2bt : ca− bt),

C ′′ = (ab− ct : ab− ct : 2ct).

Since the perpendiculars from these midpoints to the sidelines of triangleABC

are concurrent atL(t), the center of the Tucker circle, each of the trianglesA′B′C ′
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andA′′B′′C ′′ is orthologic to triangleABC atL(t). We determine the other two
orthology centers.

Proposition 17. The perpendiculars from A to B′C ′, B to C ′A′, and C to A′B′

are concurrent at the isogonal conjugate of L(t).

Proof. The quadrilateralAC ′L(t)B′ is cyclic with AL(t) as a diameter. Hence
the perpendicular fromA to B′C ′ passes through the isogonal conjugate ofL(T )
because it is theA-altitude of triangleAB′C ′. Hence this perpendicular is isogonal
to theA-diameter ofAB′C ′ that is the lineAL(t). Similarly the perpendiculars
fromB, C toC ′A′, A′B′ pass through the isogonal conjugate ofL(t). �

A

B
C

Ab

Cb
Bc

Ac

Ca

Ba

B′C′

Z′

a

Y ′

a

L(t)

Figure 15.B′C′ and its reflection in theA-bisector

It follows from (8) that the isogonal conjugate ofL(t) is the point

Q′(t) =

(

1

abc(b2 + c2 − a2) + t(a2(b2 + c2)− (b4 + c4))
: · · · : · · ·

)

.

Proposition 18. The perpendiculars from A to B′′C ′′, B to C ′′A′′, and C to A′′B′′

are concurrent at the isogonal conjugate of the harmonic conjugate of L(t) in OK

(see Figure 16).

Proof. The lineB′′C ′′ has barycentric equation

(−a2bc+ a(b2 + c2)t+ 3bct2)x

+ (ca− bt)(ab− 3ct)y + (ab− ct)(ca− 3bt)z = 0,

and the perpendicular fromA to this line is

(b(ca− bt)(c2+ a2− b2)− 2c2a2t)y− (c(ab− ct)(a2+ b2− c2)− 2a2b2t)z = 0;
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A

B CAb

Cb

Bc

Ac

Ca

Ba

L
K

O

A′′

C′′

B′′

Q′′

L̃

Figure 16. Orthology of midpoint triangle of parallel sides of Tucker hexagon

similarly for the other two perpendiculars. The three perpendiculars are concurrent
at

Q′′(t) =

(

1

abc(b2 + c2 − a2)− t(a2(b2 + c2 − a2) + 2b2c2)
: · · · : · · ·

)

.

This is the isogonal conjugate of the point

(a2(abc(b2 + c2 − a2)− t(a2(b2 + c2 − a2) + 2b2c2)) : · · · : · · · ).
Now,

(a2(abc(b2 + c2 − a2)− t(a2(b2 + c2 − a2) + 2b2c2)), . . . , . . . )

=
1

2

(

(2abc− (a2 + b2 + c2)t)(a2(b2 + c2 − a2), · · · , · · · )− 4S2t(a2, b2, c2)
)

= 2S2
(

(2
√
ν − λt)O − λtK

)

.

These are the homogeneous barycentric coordinates of the point on the Brocard
axis dividingOK in the ratio−λt : 2

√
ν − λt = −τ : 2 − τ . This is the har-

monic conjugate ofL(t) in OK; see Figure 16, where the harmonic conjugate of
L = L(t) is indicated byL̃. Therefore, the orthology centerQ′′(t) is the isogonal
conjugate of the harmonic conjugate ofL(t) in OK. �
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