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Properties of the Tangents to a Circle that Forms Pascal
Points on the Sides of a Convex Quadrilateral

David Fraivert

Abstract. The theory of a convex quadrilateral and a circle that forms Pascal
points is a new topic in Euclidean geometry. The theory deals with the proper-
ties of the Pascal points on the sides of a convex quadrilateral, the tespmT
“circles that form Pascal points”, and the special properties of “tfuecoordi-
nated with the Pascal points formed by it".

In the present paper we shall continue developing the theory and piove
new theorems that describe the properties of the tangents to the circlerthat f
Pascal points.

1. Introduction: General concepts and theorems of the theory ba convex
quadrilateral and a circle that forms Pascal points

In order to understand the new theorems, we include in the introductiornrta sho
review of the main concepts and the fundamental theorem of the theorypaotex
guadrilateral and a circle that forms Pascal points on its sides. In addition,
present two general theorems that we shall employ in proving the nevethsor

The theory investigates the situation in whidfBC' D is a convex quadrilateral
andw is a circle that satisfies the following two requirements:

() It passes through both poif, which is the point of intersection of the di-
agonals, and poirf, which is the point of intersection of the continuations
of sidesBC andAD.

(I Itintersects sideBC' and AC at their inner points\/ and N, respectively
(see Figure 1).

In this case, the fundamental theorem of the theory holdsl(se¢[[2], [3])

The Fundamental Theorem.

Let there be: a convex quadrilateral; a circle that intersects a pair of agiie
sides of the quadrilateral, that passes through the point of intersectidreafon-
tinuations of these sides, and that passes through the point of interseftiba
diagonals.

In addition, let there be four straight lines, each of which passes botlugjtrdhe
point of intersection of the circle with a side of the quadrilateral and throtrgh
point of intersection of the circle with the continuation of a diagonal.

Then there holds: the straight lines intersect at two points that are locatati®
other pair of opposite sides of the quadrilateral.

Or, by notation (see Figure 2):
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Figure 1. Figure 2. Figure 3.

Given: convex quadrilateral BC'D, inwhichE = ACN BD,F = BCN AD.
Circlew that satisfie®, F' € w; M = w N [BC]; N =w N [AD];
K=wnBD;L=wnAC.

Prove: KNNLM =P € [AB]; KM NLN =Q € [CD].

We prove the fundamental theorem using the general Pascal Thesge{]).

Definitions:
Since the proof of the properties of the points of intersectoand () is based
on Pascal’s Theorem, we shall call

(I) these pointsPascal points” on sidesA B andC'D of the quadrilateral

(1IN the circle that passes through the points of intersedi@nd F' and through
two opposite sidesa circle that forms Pascal points on the sides of the
guadrilateral”.

Of all the circles that form Pascal points, there is one particular spéil whose
center is located on the same straight line together with the Pascal pointsethat ar
formed by it.

(11M) A circle whose center is collinear with the “Pascal points” formed hwiit
be called:“the circle coordinated with the Pascal points formed by. it”

For example, in Figure 3 the center of cirake(point O) is collinear with the
Pascal pointg> and@ formed using the circle. Therefore, circleis coordinated
with the Pascal points formed by it.

We also use the following general theorems of the theory (see prooffin [2
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Figure 4. Figure 5.

General Theorem A.

Let ABCD be a convex quadrilateral. Also, let; andw, be circles defined as
follows:

wy is a circle that intersects side8C' and AD at pointsM; and Ny, respectively,
and intersects the continuations of the diagonals at pdifitand L+, respectively,
and circlew; forms Pascal point$? and @1 on sidesAB and CD, respectively
(see Figure 4)

wy is a circle that intersects side8C' and AD at pointsM» and N», respectively,
and intersects the continuations of the diagonals at pdifiteind L», respectively,
and circlew, forms Pascal point$, and Qs on sidesA B andC' D, respectively.
Then, the corresponding sides of quadrilater&s\/; Q1 N1 and P, M@)o N, are
parallel to each other.

General Theorem B.

Let ABCD be a convex quadrilateral, and let be a circle coordinated with the
Pascal pointsP and @ formed by it, wherev intersects a pair of opposite sides of
the quadrilateral at points\/ and N, and also intersects the continuations of the
diagonals at pointd< and L (see Figure 5)

Then there holds:

(@) KL||MN;

(b) quadrilateral PM QN is a kite;

(c) in a system in which circle is the unit circle, the complex coordinates of
pointsK, L, M, and N satisfy the equalitynn = kl;

(d) inversion relative to circlev transforms points® and one into the other.
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2. New properties of the tangents to a circle that forms Pascal piots

Theorem 1. Let ABC' D be a quadrilateralconvey in which the diagonals inter-
sect at pointE/, and the continuations of sidd3C' and AD intersect at pointF';

w is an arbitrary circle that passes through pointsand F', and intersects sides
BC and AD at pointsM and N, respectively, and also intersects the continua-
tions of diagonalsB D and AC at pointsK and L, respectively;

P and (@ are the Pascal points formed hy

R is the point of intersection of the tangents to the circle at poiitand L;

T is the point of intersection of the tangents to the circle at paldtand V.

Then:

(a) pointsR andT belong to “Pascal point line"PQ (see Figure .
(b) points@, T, P, and R form a harmonic quadruple, i.e., there holds
PT PR

TQ RQ’

Figure 6.

Proof. (a) In proving the theorem we shall make use of the following properties of
a pole and its polar with respect to the given circle. (Note: The definitiorttzand
properties of a pole and its polar appear, for example,lin [1, Chapter&grRaph

1] or [4l, Sections 204, 205, 211]):

(i) For a given pole, X, that lies outside the circle, polar is a straight line
that passes the points of tangency of the two tangents to the circle that issue
from pointX (see Figure 7a).

(i) In a quadrilateral inscribed in a circle in which the continuations of the
opposite sides intersect at poinksandY’, and the diagonals intersect at
point Z (see Figure 7b)there holds that straight lin&’Y is the polar of
point X, and the straight lineZ X is the polar of poinfy.
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Figure 7a. Figure 7b. Figure 7c.

(i) If the straight linesa, b, ¢, ...pass through the same poift, then their
poles,A, B, C, .. .(relative to a given circlgbelong to the same straight
line, z, which is the polar of pole Xsee Figure 7c¢).

Let us carry out the following additional constructions (see Figure 8):

We connect point&’, L, N, andM by segments, to form quadrilatedglL. N M .

We continue side& L and M N to intersect at poin§.

Figure 8.

From property (i), straight lind( L is the polar of pointR, and straight line\/ N
is the polar of poinfl” with respect to circlev.

From property (ii), straight ling’@) is the polar of pointy, and straight liné”S is
the polar of point) with respect to circlev.

Therefore, from property (iii), straight lin@ S is the polar of point” with respect

to circlew.
We thus obtained that poinfg, 7', P, and( are poles whose polars (straight lines
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KL, MN,QS,andPS, respectively) are straight lines that pass through the same
pointS.

From here, it also follows that these four points belong to the same straight lin
(line PQ, which is the polar of).

(b) Let us prove that the four poinfg, P, T, and@ form a harmonic quadruple.

We denote by the point of intersection of the tangents to the circle at palnts
and N, and byW the point of intersection of the tangents to the circle at painats
andM.

Similar to section (a), it can be proven that poistsV, P, andW belong to the
same straight line (liné.S). We shall make use of the following two well-known
properties of a harmonic quadruple of points:

(1) If point X lies outside circlev and straight linez is its polar with respect
to this circle, than for any straight line that passes through poihand
intersects circlev at pointsA and B, and polarz at pointY (see Figure
9a), there holds that the four pointX, A, Y, and B form a harmonic
quadruple.

(2) A central projection(see Figure 9bpreserves the double ratio of the four
points that lie on the same straight line.

Figure 9a. Figure 9b.

In Section (a) we saw that the straight lii&S' is the polar of point)) with
respect to circlev.

The straight ling) K passes through polg, intersects circley at pointsiM and
K, and intersects pold?PS at pointU (see Figure 8). From property (1), poiréds
andU divide chordK M of circlew by a harmonic division. In other words, points
Q, M, U, andK constitute a harmonic quadruple on straight Kp& .

In the central projection (projective transformation) from padint the points of
straight lineQ K are transformed to the points of straight ligé’, and in particular,
points@, M, U, andK are transformed to pointg, 7', P and R, respectively. In
accordance with property (2), the double ratio of po@ts\/, U, andK on straight
line QK equals the double ratio of point, 7', P and R on straight lineQ) P, and
therefore pointsk, P, T" and(@ must also constitute a harmonic quadruple. O

Theorem 2. Let ABCD be a quadrilateral in which the diagonals intersect at
point E, the continuations of sideBC and AD intersect at pointF', and the
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continuations of sided B andC D intersect at pointz,

w is an arbitrary circle that passes through poinksand F', and intersects sides
BC and AD at pointsM and N, respectively, and intersects the continuations of
diagonalsBD and AC at pointsK and L, respectively;

w1 is an arbitrary circle that passes through poinisand GG, and intersects sides
AB andCD at pointsM; and N1, respectively, and intersects the continuations
of diagonalsB D and AC' at pointsK; and L4, respectivelysee Figure 1D

Then:

(a) The angle between the tangents to circlat points K and L (the angle
between the tangents to cirelg at pointsK; and L) does not depend on
the choice of circle, but depends only on the angle between the diagonals
of the quadrilateralABC D.

(b) The angle between the tangents to circlat pointsiM and N (the angle
between the tangents to ciralg at pointsM; and N;) does not depend
on the choice of the circle, but depends only on the angle between the
continuations of side®C and AD (the angle between the continuations
of sidesAB andCD).

Figure 10.

Proof. We denote byR the point of intersection of the tangents to cirelat points
K and L, and byT the point of intersection of the tangents to this circle at points
M andN.

We denote byy the size of angle K EL. In circle w, the inscribed angle
£ KFL equals each of the anglesX LR and £ LK R, which are the angles be-
tween chordK L and the tangents at the pointsand K, respectively (see Figure
10), in other words{ LKR = A KLR = {KEL = .

Therefore, in the triangl& L R there holdsX K RL = 180° — 2¢.
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Thus, the size of anglg€ K RL depends only on angle, wherey is the angle
between the diagonals of quadrilaterbBC D, and therefore> does not depend
on the choice of circlev. Therefore, angle K RL also does not depend on the
choice of circlew.

Angle A M F'N is also an inscribed angle in circle We denote this angle by
and by a similar way can show that the angles in citckdso satisfy the following
equality: {NMT = LMNT = LMFN = 6.

Hence, in the triangld/ NT there holds< MTN = 180° — 26.

For the purpose of the proof, we shall assume that apgteacute. Then arc
KL of circlew is smaller thari80°. In this case, the centdd), of w lies between
chordsK' L and M N, and therefore, poinR and pointsO andT lie on different
sides of lineK L (as shown in Figure 10).

Angles{ K1 FEL, and{ K EL are adjacent, thereforeK1 EL; = 180° — . In
other words £ K1 E L, is an obtuse angle, and therefore ﬁG\Ll of circle w;
is greater thari80°. In this case, chord&’; L; and M N; of circle w; lie on the
same side relative to the centél;, of circle w;. Therefore, pointD; and points
R; andT are located on different sides relative to likg L.

Let us now find angle’ K1 R1 L1 between the tangents to circle at pointsk;
andL;.

For angle£L; K1 X between the tangent to circle, at point K; and chord
KLy there hO|dSZL1K1X = KKlELl = 180° — ©.

Henceitfollowsthak R, K1 L1 = 180° — L L1 K31 X = 180° — (180° — ¢) = ¢,
and therefore in the isosceles trian@leL, R, there holds:

ALK Ri1Li = 180° — 2.

In a similar manner, it is easy to prove that if the angle between straight lines
AB andC D equalsdy, then angled M, T N, between the tangents to cirelg at
pointsM; and Ny is 180° — 26;. O

Note: In the case that angle is obtuse, it is easy to prove that the reciprocal
relation of pointsk, O, T', and lineK L, and the reciprocal relation of poinig,
01, Ty, and lineK Ly will change accordingly.

In other words: poinO and pointsT” and R will be located on different sides
relative to lineK L, and pointR; and pointsO, 77 will be located on different
sides relative to lind{; L.

Therefore, Theorem 2 also holds in this case.

Conclusions from Theorem 2:

(1) The angle between the tangents to circlat points K" and L equals the
angle between the tangents to circle at pointsK; and L.

(2) The angle between the tangents to cirelet points M and N and the
angle between the tangents to circale at pointsM; and N; are usually
not equal.

(3) In a quadrilateral in which the diagonals are perpendicular, the tangents
to circle w at points K and L (and the tangents to circle; at points K
and L) are parallel.
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Note: One can arrive at Conclusion (3) by either of two methods:

(D Insuch a quadrilateraf K E'L is an inscribed right angle. It therefore rests
on diameterK L of circle w, and therefore the tangents to a circle at the
ends of a diameter are parallel to each other.

(I If o =90°, then from the formula we obtained in proving Theorem 2, the
angle between the tangents to cirglat pointsK and [ is 180° —2-90° =
0°. Therefore the tangents are parallel.

Theorem 3. Let ABC'D be a quadrilateral in which the diagonals intersect at
point F, and the continuations of sidésC' and AD intersect at point;

w is a circle that passes through pointsand F', and intersects sideBC and AD
at pointsM and N, respectively, and intersects the continuations of diagoRdls
and AC at pointsK and L, respectively;

In addition, circlew is coordinated with the Pascal poinf3 and Q formed by it
(i.e., the center), of circlew belongs to linePQ);

The four tangents to circle at pointsK, L, M, and N intersect pairwise at points
V, W, X, andY. In other words, the tangents at poirftsand M/ intersect at point
V, the tangents at pointé and IV intersect at poinf/, the tangents at point&
and N intersect at pointX, and the tangents at poinfsand M intersect at point
Y (see Figure 11)

Then: Straight lineP@ is a mid-perpendicular to segmehti (point P is the
middle of segmenV' W) and P(Q is also a mid-perpendicular to segmeitY’
(pointQ is the middle of segmekY).

Figure 11.
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Proof. We denote bys the point of intersection of line& L andM N. In the proof

of Theoreni ], we saw that point§, W, P, andS lie on the same straight line and
form a harmonic quadruple. From Section (a) of General TheoremfBlldtvs
that in the case that circle is coordinated with the Pascal points formed by it,
straight lineskK L and M N are parallel to each other, and therefore their point of
intersectionS, is a point at infinity.

Hence it follows that:

(i) Point P is the middle of segmeit W (see, for examplel,_[4, Section 199];
(ii) Straight lineV W is parallel to linesK L. and M N (because lind” IV also
passes through poiis);
(i) QuadrilateralPM QN is a kite, and therefor®Q LM N (see Section (b)
in General Theorem B).

From these three properties, it follows that straight i@ is a mid-perpendicular
to segmen¥’ W, bisecting segmenrit W at pointP.

We will now prove that lineP(Q is also a mid-perpendicular to segment’,
bisectingX'Y at point@.
From Section (d) in General Theorem B, an inversion transformation eserct
to circlew transforms pointg® and@ one into the other. Therefore:

() PointsO, P, andQ lie on the same straight line (line P);
(i) The polar of pointP with respect to circlev is the straight line that passes
through pointR, and is perpendicular to lin@ P.

Straight lineL M is the polar of point’” with respect to circlev, and pointP be-
longs toLM. Therefore, from the principal property of a pole and its polar (see
[1, Chapter 6, Paragraph 1]), the polar of paihf{with respect to circlev) passes
through pointy”.

Similarly, because straight lin& N is the polar of pointX (with respect to circle
w), and becaus® € K N, it follows that the polar of poinP passes through point
X.

We thus obtained that the polar of poit(with respect to circley) passes through
the three pointsy), Y, and X, and also is perpendicular to straight lifé>. There-
fore, straight lineX'Y” passes through poiig) and is parallel to straight lin€ 1/
(becaus&’W 1LOP and XY 1LOP).

We denote byR the point of intersection of the tangents at poiAfsand L (see
Figure 11). From Theoref 1, poift belongs to the straight linBQ.

We consider triangl& XY, for which there holds:

(i) Segmentl’IW, whose endd” and W lie on two sides of the triangle, is
parallel to the third sideXY’;
(ii) Line RP bisects segmert W (at pointP).
Therefore, lineR P also bisects segmeY” (at point(Q).
In summary, straight lindR P (which is also linePQ) is a mid-perpendicular to
segmentX'Y'. O

Theorem 4. Let ABCD be a quadrilateral in which the diagonals intersect at
point £/, and the continuations of sidésC' and AD intersect at pointt;
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w is a circle that passes through pointsand F', and intersects sideBC and AD
at pointsM and N, respectively, and intersects the continuations of diagoRdls
and AC at pointsK and L, respectively;
R is the point of intersection of the tangents to cirglat pointsK and L;
P and( are the Pascal points formed by circle
We denote<{ M PN = o, AMQN = 5, {KRL =, {AFB = 6.
Then:
(&) When the center), of circle w lies between chord& L. and M N (see
Figure 12) there holds:
() a + B+~ = 180° and (ii) ,8+5+% = 90°;
(b) When chordK L is the diameter ob, there holds:
() o+ B =180° and(ii) 8+ 6 = 90°;
(c) When chordd< L and M N lie on the same side relative to the centeyr
(see Figure 13b}there holds:
() a+ 8 —~ = 180° and (i) B + 6 — % — 90°;
a—p
5

(d) In each of the three cases listed above there halds:

Figure 12.

Proof. In accordance with Theorem 2, in any circle that forms Pascal points and
passes through a pair of opposite sides, the angle between the tangeatsitcé¢h

at the points of intersection of the circle with the continuations of the diagath&ls (
tangents at the point&” and L in Figure 12) is a fixed value that does not depend
on the selection of the circle.
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From General Theorem A, any circle that forms Pascal pathend @ on sides
AB andCD and that intersects the two other sides at poivitsand N defines
a quadrilateral,PMQN, with fixed angles that do not depend on the choice of
circle.

Therefore, angles, 5 and~y do not depend on the choice of circle To prove
the theorem, we shall chooseto be the circle coordinated with the Pascal points
formed by it.

(a)(i) The center, of w lies between chord& L andM N (see Figure 13a), there-
fore angle K N L (the inscribed angle resting on ak€L) equals angle{ LK R
(the angle between tangeRtR and chordK L). Angle £ LK R is the base angle

in the isosceles triangl& RK L. Therefore there holds LK R = 90 — % and
therefore alsa K NL = 90 — g

Figure 13a. Figure 13b.

In addition,£ K N L is an exterior angle of trianglé& PQN. The angles of this
triangle satisfy: 4 N PQ = % andANQP = g (becausePM QN is a kite and
p

segmentP(Q) is its main diagonal). Therefote K NL = % + 5" Hence it follows
that% + g =90° — % ora+ 8+~ = 180°.
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(i) £ KQL is an exterior angle of circle (see Figure 13a), and therefore there
holds:

1 /-
LKQL= 3 (KL _ MN)
1— 1 —
— _KL—-MN
2 2
— ALNK — {MFN

o
= 90°—- - -4
2

It also follows thats = 90° — % —dorpg+46+ % = 90°.

(b)(i) Chord K L is a diameter ofv, therefore the tangents to the circle at poifts
andL are parallel to each other, and therefore angtetween the tangents equals
0 (R is a point at infinity). £ K N L is an exterior angle that rests on the diameter,
and therefore, it equaf®°.

+

N |

In addition, as we have seen in Section (a), we haleV L =

Therefore% + g =90° ora + 8 = 180°.

(i) For angle£ KQL = j3 there holds:

| Q

1/ — 1 1
LKQL = (KL . MN) = 3-180° = ZMIN = 90° — LMFN = 90° =&,
and from here we havé + § = 90°.

(c)(i) ChordsK L and M N lie on the same side relative to center(as described
in Figure 13b). For anglg K N L there holds:
l— 1 —
LKNL=SKFL =3 (3600 - KEL) — 180° — LK LR.
Angle L K LR is the angle between the tangent to the circle (at pb)rand chord
LK. In addition, it is also the base angle in isosceles triadgle L R. Therefore
AKLR =90° — % and hence KNL = 90° + %
In Section (a) we proved that K NL = % + g therefore% + g =90° + % or
a+ B —v=180°.
(i) For angle< KQL = j there holds (see Figure 13b):

1/
4KQL = (KFL _ MEN) — A{KNL— {MNF.

Therefore, after substituting the appropriate expressions for thesanggeobtain

6290°+%—5,andhencé+5:900+%.

(d) We show that the equality holds for each of the three locations of thercén
of circle w relative to chord¥< L andM N.
If the centerQO, of w is between chord& L and M N, there holds:

263 +26 = 180° — v = 28 + 2§ = o + 3, and thereforé = aT_B.
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a+p

If chord K L is a diameter ofv, there holds3 + 6 = 90° and alsoT = 90°,
therefore + & = atb_s_a-F

If chords KL and M N are on the same side relative to the centerthere holds:
20420 =180°+v=258+20 = o+ S, andthereforé:ﬂ. O

2

Theorem 5. Let ABC'D be a quadrilateral in which the diagonals intersect at
point £/, and the continuations of sidésC' and AD intersect at pointt;

w is a circle that passes through pointsand F', and intersects sideBC' and AD
at pointsM and N, respectively, and intersects the continuations of diagoRdls
and AC at pointsK and L, respectively;

In addition, circlew is coordinated with the Pascal poinf2 and Q formed by it
(i.e., the center), of circlew belongs to linePQ);

I andJ are the points of intersection of straight lif&) and circlew;

R is the point of intersection of the tangents to circleat points K and L (see
Figure 14)

Then:

(a) Point I is the center of the circle inscribed in kifeM @V, and pointJ is
the center of the circle that is tangent to the continuations of the sides of
kite PMQN'.

(b) Point J is the center of the incircle of triangl& K L, and point/ is the
center of the excircle in triangl& K . which is tangent to sid& L.

Figure 14. Figure 15.
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Proof. (a) Given: circlew whose center), is collinear with the Pascal poinf3
and(@ formed by it. Therefore, from Section (d) of General Theorem B, risioa
relative to circlew transforms pointg” and( one into the other. Therefore, these
points together with the points of intersectiband.J form a harmonic quadruple.
Since pointd and.J divide segmenP() harmonically { — internal division,J —
external division), circlev is a circle of Apollonius of segmeR(Q (see, for exam-
ple, [1, Chapter 5, paragraph 4]).

Point M belongs to the circle of Apollonius, and therefore, fon/, it holds that
segment)/ I bisects angle PM @ in triangle PM Q) (see Figure 15).
QuadrilateralPM QN is a kite. The main diagonal of the kite (segmétd) bi-
sects the two anglesM PN and4M@QN. It follows that point/ is the point of
intersection of three angle bisectors in quadrilatétay QN. Therefore, pointf
is equidistant from all four sides of the quadrilateral. It thus follows tlwat{ is
the center of the circle inscribed in quadrilatefal/ QN .

We now consider segmet.J. Since pointK belongs to the circle of Apollonius
w (whose diameter i$.J, and<1 K J = 90°), it follows that segmenk .J bisects
the exterior angle of triangl& PK Q (the angle< PK Q)1).

Similarly, we prove thaf.J bisects anglel PLQ)-.

In addition, rayPJ bisects angle K PL (becauseP() bisects angle{M PN,
which is vertically opposite to anglé K PL). It follows that point.J is located at
equal distances from four ray®. K, PL, K@, and LQ-, which are the continua-
tions of the sides of kit M QN (See Figure 15).

Therefore,J is the center of the circle tangent to the continuations of the sides of
the quadrilateraPM QN .

Figure 16.

(b) Let us prove that poinf is the center of the incircle of triangle K L. Point
J belongs to rayRO, which bisects anglg K RL between the tangents to circle
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that issue from poink (See Figure 16).

In addition, pointJ is the middle of ard< L (becauseRO is a mid-perpendicular
to chordK L of circle w).

1 — 1 —
Therefore{LKJ = {JKR (because/ LK J = 5KJ and<£JKR = 5JK), and

thereforeK J bisects angle/ LK R.

It follows that point.J is the point of intersection of the two angle bisectors in tri-
angleARK L. Therefore, point/ is the center of the incircle in this triangle.
Angle £ JK is an inscribed angle resting on diamefer of the circlew, there-
fore K JKI =90°. In addition, anglesX LK R, and L LK R are adjacent an-
gles. Hence, segmelif ] bisects{ LK R,, where{ LK Ry is exterior to triangle
ALK R (see Figure 16).

Similarly, we prove that segmeit/ bisects angle/ K L R,, which is also an exte-
rior angle to triangleA LK R.

We obtained that point is the point of intersection of two angle bisectors. These
angles are exterior angles in triangleR K L, therefore poinf is located at equal
distances from segme L (side of triangleARK L), and from raysk R; and
LR (the continuations of the two other sides of the triangle).

Therefore/[ is the center of the excircle of triangleRK L. O

Theorem 6. The data of this Theorem is the same as the data of Theorem 5.
We also denote by:
X1 the circle inscribed in kitePM QN
X5 the circle tangent to the continuations of the sides of Kifd Q IV,
X3 the incircle of triangleRK L,
X4 the excircle of triangleRK L (see Figure 17)
r; the radius of circleX; (i € {1,2,3,4}), and
AMPN = o, {MQN = 3, {KRL = ~.
Then:

(a) The following relations hold for the radii of circles;:

(I) 1+ 19 <13+ 714

.« .

Sin — — sin —
m_ T2 2
r .« . B
2 sin — 4+ sin —

(ii)

(b) The following relations hold for the areas of circlés:
(i) f o+ B < 180° thenSy, + Sy, < Sx, + Sx,.
(II) If o + £ = 180°, thenS;l + 522 = 523 + 524.
(i) If a4+ 8 > 180° thenSy, + Sx, > Sx, + Sx,.
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Figure 17. Figure 18.

Proof. (a) We denote by the point of tangency of circlé’s on sidePN of

kite PM QN (see Figure 18). Therefored = r;. In right triangleAIPH there
r1

. ar

S —

o IH
holds:sin 5= 7p" and thereford P =

We denote by the point of tangency of circlé&’; on sidePN of kite PMQN.

ThereforeJG = rs. In the right triangleA PJG there holdssin L GPJ = j—g
and therefore/ P = T—ga.
sin —
2 .
For segmenf.J we obtain:IJ = IP + PJ = rla + TQa = oz2'
sin — sin — sin —

We denote byr the length of the radius of circle, and therefore there holds:
OI = 0J = 0OL =randalsaJ = 2r, and hence + r9 = 2rsin g

Point Z is the point of tangency of circle¥s and 2y on side KL of triangle
ARKL (see Figure 18), and therefaié’ = r3 and/Z = r4. Therefore, for seg-
mentlJ there also holdslJ = JZ + IZ = r3 + r4, and hencerg + r4 = 2r.

It follows that the radii of the four circle&’; satisfy the equality:

e
r1+re = (r3+r4)s1n§.

Angle% is acute, therefora‘n% < 1, and the following inequality holds:

rr+1r9 <1rs+r4.
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We express the angles of triangf L usinga andj.

In APOL there holds:{OPL = g, sideOL is the radius of circles, and also
sideOL is perpendicular to the tangent to the circle at pdint In other words,
ALOLP = 90°. Therefore, in the right triangl& RLO there holds:

£LROL = 90° — % and henceX POL = 90° + %

We will now show that in all cases where chdid. is not a diameter (and therefore

point R is not a point at infinity) there hold§ PLO = g

If the center, is between chord& L and M N, then angle ROL is an exterior
angle of triangleA PO L, and angle< ROL is not adjacent to anglg€ PLO (see
Figure 18).

B

We use the formul&. + 5 + 5= 90° from Section (a) of Theorem 4.
There holds:

{LPLO = {ROL — {OPL — (900 - %) _ %

- 90°—(9+1):§.

If chords KL and M N are located on the same side relative to the cettethen
angleLROL is an exterior angle of triangl& POL (see Figure 19), and there

holds: L ROL = 90° — %

We use the equality OPL = % and the formulag— + g — % = 90° from Section
(c) of Theorem 4 and obtain:
— o g _ o 1 _ o g 1 _ é
LPLO = 180° = 3 (90 2) =90° -2+ =1
From the Law of Sines in the triangle PO L it follows that:
or OL
and hence:

sin L PLO - sin L LPO

7. sin —
OP=—42.
S1n E
For segment P there holdsZP = IO — OP (see Figures 18 and 19).
We substitute the obtained expressions for the segments that appear intthe las

equality, to obtain:

r1 T - S1n —
a7 ;
S111 — S —
2 2
e .
and hencer; = r | sin 5 sin g)

For segmenPJ there holds:PJ = PO + OJ.
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We substitute the corresponding expressions in this equality, to obtain:

r-sin —
T9 - 2
—a - T a +r,
sin — sin —
2 2
and hencers = r <sin§ + sin g)
sin — — sin é
™ 2 2

. T .
Therefore for the ratu#, we obtain;— =
T2

Figure 19.

(b) We consider separately the sum of the areas of citEleand X5, and the
sum of the areas of circless; and Xy

Sy, + Sy, = 71'(7“%4-7‘%)

2 o B 2 2 a B 2
=7mlr (sin2—sin2> +7r (sin2+sin2>

« I}
— 902 (sin2 2 2P
wr <sm 5 + sin 2),
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Sy, + Sy, = 7 (r3 +13)
= ((7“3 +r)” — 27"37“4>

= ((27‘)2 - 27“31“4) .

Let us express the product of radiir4 usinge, 5 andr.
For diametetd J in circlew there holds:lJ = IZ + ZJ = ry + 3.
SegmentZ L is perpendicular to diametdt/ (at pointZ), and the other end of
segmentZ L (point L) belongs to circlev (see Figures 18 and 19). Therefore the
length of segmen¥ L is the geometric mean of the lengths of segméeutsand
ZJ,inotherwords Z - ZJ = ZL? orrs - ry = ZL2.

In right triangleO L Z there holdssin £ LOZ = % and hence:

ZL = rsin (90O — %) = rsin <Z+§> .

Therefore, for the sum of circle areds andX’; there holds:
Sy, +Sy, =1 (47‘2 — 27“37’4)
= 7 (4r® — 2ZL?)

= <47“2 — 2r? sin? <Z + g)) .

Let us consider the difference of the area sums:
(821 + SE2) - (523 + 524)

= 7r? <2 sin? % + 2 sin? g) — 2mr? (2 — sin? <g + g))

= 712 (2 — (cosa + cos B)) — 2mr? <1 + cos? (O‘;>)
:mj(2_2COSa+ﬁcosa_ﬁ—2_2c052<0ég_ﬁ>>

2 2
= —27r7“zcosa;5 <cosa;ﬁ —l—cos()[;_ﬁ) .
In other words we have:
(Ss, + Sx,) — (Sx, + Sx,) = 2772 cos a—;—ﬂ <cos a ; b + cos OHQ—B> :
Let us investigate the sign of expression
A= —27Tr2cosOH2_B (cosagﬂ +Cosa;5>

as a function of the sum of angles+ 5:
() If o+ B < 180°, which is the case where the cent@r,lies between chords
KL and M N, then anglea—gﬁ Q;B

is acute and thereforeos > 0, and
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cos = ; b + cos = ; B) > 0. Therefore in this case, X 0, which gives

Sgl + SEQ < 523 + 524.

(i) If «+ B = 180°, which is the case where chofdL is a diameter of circle
w, then angleCﬂ equals90° and thereforeos ath =0.
In this case, A= 0, andSy, + Sy, = Sx, + Sx,.

(iii) If o+ S > 180°, which is the case where chord§L and M N are on
+8

the same side relative to the centér, then angleaT is obtuse and therefore
a+

CoS 5 < 0.
Let us investigate the sign of B (cos a ; p + cos O‘;ﬁ>
a—f a+p o —p a B

There holds: =2 — — =2 — —.

ere no dSCOS 9 4+ cos 9 COS 9 COS 9 COS B COS 5
Since angleg andé are acute, it holds thabs ad cos é > 0, and hence B> 0.
Therefore, in this case, & 0, which givesSy, + Sx, > Sx, + Sx,. O
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