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Properties of the Tangents to a Circle that Forms Pascal
Points on the Sides of a Convex Quadrilateral

David Fraivert

Abstract. The theory of a convex quadrilateral and a circle that forms Pascal
points is a new topic in Euclidean geometry. The theory deals with the proper-
ties of the Pascal points on the sides of a convex quadrilateral, the properties of
“circles that form Pascal points”, and the special properties of “the circle coordi-
nated with the Pascal points formed by it”.

In the present paper we shall continue developing the theory and provesix
new theorems that describe the properties of the tangents to the circle that forms
Pascal points.

1. Introduction: General concepts and theorems of the theory of a convex
quadrilateral and a circle that forms Pascal points

In order to understand the new theorems, we include in the introduction a short
review of the main concepts and the fundamental theorem of the theory of a convex
quadrilateral and a circle that forms Pascal points on its sides. In addition,we
present two general theorems that we shall employ in proving the new theorems.

The theory investigates the situation in whichABCD is a convex quadrilateral
andω is a circle that satisfies the following two requirements:

(I) It passes through both pointE, which is the point of intersection of the di-
agonals, and pointF , which is the point of intersection of the continuations
of sidesBC andAD.

(II) It intersects sidesBC andAC at their inner pointsM andN , respectively
(see Figure 1).

In this case, the fundamental theorem of the theory holds (see [2], [3]):

The Fundamental Theorem.
Let there be: a convex quadrilateral; a circle that intersects a pair of opposite
sides of the quadrilateral, that passes through the point of intersection ofthe con-
tinuations of these sides, and that passes through the point of intersectionof the
diagonals.
In addition, let there be four straight lines, each of which passes both through the
point of intersection of the circle with a side of the quadrilateral and throughthe
point of intersection of the circle with the continuation of a diagonal.
Then there holds: the straight lines intersect at two points that are located on the
other pair of opposite sides of the quadrilateral.

Or, by notation (see Figure 2):
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Figure 1. Figure 2. Figure 3.

Given: convex quadrilateralABCD, in whichE = AC ∩BD,F = BC ∩AD.
Circleω that satisfiesE,F ∈ ω; M = ω ∩ [BC]; N = ω ∩ [AD];
K = ω ∩BD; L = ω ∩AC.

Prove: KN ∩ LM = P ∈ [AB]; KM ∩ LN = Q ∈ [CD].
We prove the fundamental theorem using the general Pascal Theorem (see [2]).

Definitions:
Since the proof of the properties of the points of intersectionP andQ is based

on Pascal’s Theorem, we shall call

(I) these points“Pascal points” on sidesAB andCD of the quadrilateral.
(II) the circle that passes through the points of intersectionE andF and through

two opposite sides“a circle that forms Pascal points on the sides of the
quadrilateral”.

Of all the circles that form Pascal points, there is one particular special circle whose
center is located on the same straight line together with the Pascal points that are
formed by it.

(III) A circle whose center is collinear with the “Pascal points” formed by itwill
be called:“the circle coordinated with the Pascal points formed by it”.

For example, in Figure 3 the center of circleω (point O) is collinear with the
Pascal pointsP andQ formed using the circle. Therefore, circleω is coordinated
with the Pascal points formed by it.

We also use the following general theorems of the theory (see proofs in [2]):
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Figure 4. Figure 5.

General Theorem A.
Let ABCD be a convex quadrilateral. Also, letω1 andω2 be circles defined as
follows:
ω1 is a circle that intersects sidesBC andAD at pointsM1 andN1, respectively,
and intersects the continuations of the diagonals at pointsK1 andL1, respectively,
and circleω1 forms Pascal pointsP1 andQ1 on sidesAB andCD, respectively
(see Figure 4);
ω2 is a circle that intersects sidesBC andAD at pointsM2 andN2, respectively,
and intersects the continuations of the diagonals at pointsK2 andL2, respectively,
and circleω2 forms Pascal pointsP2 andQ2 on sidesAB andCD, respectively.
Then, the corresponding sides of quadrilateralsP1M1Q1N1 andP2M2Q2N2 are
parallel to each other.
General Theorem B.
LetABCD be a convex quadrilateral, and letω be a circle coordinated with the
Pascal pointsP andQ formed by it, whereω intersects a pair of opposite sides of
the quadrilateral at pointsM andN , and also intersects the continuations of the
diagonals at pointsK andL (see Figure 5).
Then there holds:

(a) KL||MN ;
(b) quadrilateralPMQN is a kite;
(c) in a system in which circleω is the unit circle, the complex coordinates of

pointsK, L, M , andN satisfy the equalitymn = kl;
(d) inversion relative to circleω transforms pointsP andQ one into the other.
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2. New properties of the tangents to a circle that forms Pascal points

Theorem 1. LetABCD be a quadrilateral(convex) in which the diagonals inter-
sect at pointE, and the continuations of sidesBC andAD intersect at pointF ;
ω is an arbitrary circle that passes through pointsE andF , and intersects sides
BC andAD at pointsM andN , respectively, and also intersects the continua-
tions of diagonalsBD andAC at pointsK andL, respectively;
P andQ are the Pascal points formed byω;
R is the point of intersection of the tangents to the circle at pointsK andL;
T is the point of intersection of the tangents to the circle at pointsM andN .
Then:

(a) pointsR andT belong to “Pascal point line”PQ (see Figure 6).
(b) pointsQ, T , P , andR form a harmonic quadruple, i.e., there holds

PT

TQ
=

PR

RQ
.

Figure 6.

Proof. (a) In proving the theorem we shall make use of the following properties of
a pole and its polar with respect to the given circle. (Note: The definition andthe
properties of a pole and its polar appear, for example, in [1, Chapter 6, Paragraph
1] or [4, Sections 204, 205, 211]):

(i) For a given pole,X, that lies outside the circle, polarx is a straight line
that passes the points of tangency of the two tangents to the circle that issue
from pointX (see Figure 7a).

(ii) In a quadrilateral inscribed in a circle in which the continuations of the
opposite sides intersect at pointsX andY , and the diagonals intersect at
point Z (see Figure 7b),there holds that straight lineZY is the polar of
pointX, and the straight lineZX is the polar of pointY .
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Figure 7a. Figure 7b. Figure 7c.

(iii) If the straight linesa, b, c, . . . pass through the same pointX, then their
poles,A, B, C, . . .(relative to a given circle) belong to the same straight
line,x, which is the polar of pole X(see Figure 7c).

Let us carry out the following additional constructions (see Figure 8):
We connect pointsK,L,N , andM by segments, to form quadrilateralKLNM .

We continue sidesKL andMN to intersect at pointS.

Figure 8.

From property (i), straight lineKL is the polar of pointR, and straight lineMN

is the polar of pointT with respect to circleω.
From property (ii), straight linePQ is the polar of pointS, and straight linePS is
the polar of pointQ with respect to circleω.
Therefore, from property (iii), straight lineQS is the polar of pointP with respect
to circleω.
We thus obtained that pointsR, T , P , andQ are poles whose polars (straight lines
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KL, MN , QS, andPS, respectively) are straight lines that pass through the same
pointS.
From here, it also follows that these four points belong to the same straight line
(line PQ, which is the polar ofS).
(b) Let us prove that the four pointsR, P , T , andQ form a harmonic quadruple.
We denote byV the point of intersection of the tangents to the circle at pointsL

andN , and byW the point of intersection of the tangents to the circle at pointsK

andM .
Similar to section (a), it can be proven that pointsS, V , P , andW belong to the
same straight line (linePS). We shall make use of the following two well-known
properties of a harmonic quadruple of points:

(1) If point X lies outside circleω and straight linex is its polar with respect
to this circle, than for any straight line that passes through pointX and
intersects circleω at pointsA andB, and polarx at pointY (see Figure
9a), there holds that the four pointsX, A, Y , andB form a harmonic
quadruple.

(2) A central projection(see Figure 9b)preserves the double ratio of the four
points that lie on the same straight line.

Figure 9a. Figure 9b.

In Section (a) we saw that the straight linePS is the polar of pointQ with
respect to circleω.

The straight lineQK passes through poleQ, intersects circleω at pointsM and
K, and intersects polarPS at pointU (see Figure 8). From property (1), pointsQ
andU divide chordKM of circleω by a harmonic division. In other words, points
Q, M , U , andK constitute a harmonic quadruple on straight lineQK.

In the central projection (projective transformation) from pointW , the points of
straight lineQK are transformed to the points of straight lineQP , and in particular,
pointsQ, M , U , andK are transformed to pointsQ, T , P andR, respectively. In
accordance with property (2), the double ratio of pointsQ,M ,U , andK on straight
line QK equals the double ratio of pointsQ, T , P andR on straight lineQP , and
therefore pointsR, P , T andQ must also constitute a harmonic quadruple. �

Theorem 2. Let ABCD be a quadrilateral in which the diagonals intersect at
point E, the continuations of sidesBC and AD intersect at pointF , and the
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continuations of sidesAB andCD intersect at pointG;
ω is an arbitrary circle that passes through pointsE andF , and intersects sides
BC andAD at pointsM andN , respectively, and intersects the continuations of
diagonalsBD andAC at pointsK andL, respectively;
ω1 is an arbitrary circle that passes through pointsE andG, and intersects sides
AB andCD at pointsM1 andN1, respectively, and intersects the continuations
of diagonalsBD andAC at pointsK1 andL1, respectively(see Figure 10).
Then:

(a) The angle between the tangents to circleω at pointsK andL (the angle
between the tangents to circleω1 at pointsK1 andL1) does not depend on
the choice of circle, but depends only on the angle between the diagonals
of the quadrilateralABCD.

(b) The angle between the tangents to circleω at pointsM andN (the angle
between the tangents to circleω1 at pointsM1 andN1) does not depend
on the choice of the circle, but depends only on the angle between the
continuations of sidesBC andAD (the angle between the continuations
of sidesAB andCD).

Figure 10.

Proof. We denote byR the point of intersection of the tangents to circleω at points
K andL, and byT the point of intersection of the tangents to this circle at points
M andN .

We denote byϕ the size of angle∡KEL. In circle ω, the inscribed angle
∡KEL equals each of the angles∡KLR and∡LKR, which are the angles be-
tween chordKL and the tangents at the pointsL andK, respectively (see Figure
10), in other words:∡LKR = ∡KLR = ∡KEL = ϕ.

Therefore, in the triangleKLR there holds:∡KRL = 180◦ − 2ϕ.
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Thus, the size of angle∡KRL depends only on angleϕ, whereϕ is the angle
between the diagonals of quadrilateralABCD, and thereforeϕ does not depend
on the choice of circleω. Therefore, angle∡KRL also does not depend on the
choice of circleω.

Angle∡MFN is also an inscribed angle in circleω. We denote this angle byδ,
and by a similar way can show that the angles in circleω also satisfy the following
equality:∡NMT = ∡MNT = ∡MFN = δ.

Hence, in the triangleMNT there holds:∡MTN = 180◦ − 2δ.
For the purpose of the proof, we shall assume that angleϕ is acute. Then arc

K̂L of circleω is smaller than180◦. In this case, the center,O, of ω lies between
chordsKL andMN , and therefore, pointR and pointsO andT lie on different
sides of lineKL (as shown in Figure 10).

Angles∡K1EL1 and∡KEL are adjacent, therefore∡K1EL1 = 180◦ − ϕ. In
other words,∡K1EL1 is an obtuse angle, and therefore arĉK1GL1 of circle ω1

is greater than180◦. In this case, chordsK1L1 andM1N1 of circleω1 lie on the
same side relative to the center,O1, of circleω1. Therefore, pointO1 and points
R1 andT1 are located on different sides relative to lineK1L1.

Let us now find angle∡K1R1L1 between the tangents to circleω1 at pointsK1

andL1.
For angle∡L1K1X between the tangent to circleω1 at pointK1 and chord

K1L1 there holds:∡L1K1X = ∡K1EL1 = 180◦ − ϕ.
Hence it follows that∡R1K1L1 = 180◦ − ∡L1K1X = 180◦ − (180◦ − ϕ) = ϕ,

and therefore in the isosceles triangleK1L1R1 there holds:
∡K1R1L1 = 180◦ − 2ϕ.
In a similar manner, it is easy to prove that if the angle between straight lines

AB andCD equalsδ1, then angle∡M1T1N1 between the tangents to circleω1 at
pointsM1 andN1 is 180◦ − 2δ1. �

Note: In the case that angleϕ is obtuse, it is easy to prove that the reciprocal
relation of pointsR, O, T , and lineKL, and the reciprocal relation of pointsR1,
O1, T1, and lineK1L1 will change accordingly.
In other words: pointO and pointsT andR will be located on different sides
relative to lineKL, and pointR1 and pointsO1, T1 will be located on different
sides relative to lineK1L1.
Therefore, Theorem 2 also holds in this case.

Conclusions from Theorem 2:

(1) The angle between the tangents to circleω at pointsK andL equals the
angle between the tangents to circleω1 at pointsK1 andL1.

(2) The angle between the tangents to circleω at pointsM andN and the
angle between the tangents to circleω1 at pointsM1 andN1 are usually
not equal.

(3) In a quadrilateral in which the diagonals are perpendicular, the tangents
to circleω at pointsK andL (and the tangents to circleω1 at pointsK1

andL1) are parallel.
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Note: One can arrive at Conclusion (3) by either of two methods:

(I) In such a quadrilateral∡KEL is an inscribed right angle. It therefore rests
on diameterKL of circle ω, and therefore the tangents to a circle at the
ends of a diameter are parallel to each other.

(II) If α = 90◦, then from the formula we obtained in proving Theorem 2, the
angle between the tangents to circleω at pointsK andL is 180◦−2·90◦ =
0◦. Therefore the tangents are parallel.

Theorem 3. Let ABCD be a quadrilateral in which the diagonals intersect at
pointE, and the continuations of sidesBC andAD intersect at pointF ;
ω is a circle that passes through pointsE andF , and intersects sidesBC andAD
at pointsM andN , respectively, and intersects the continuations of diagonalsBD

andAC at pointsK andL, respectively;
In addition, circleω is coordinated with the Pascal pointsP andQ formed by it
(i.e., the center,O, of circleω belongs to linePQ);
The four tangents to circleω at pointsK, L, M , andN intersect pairwise at points
V ,W ,X, andY . In other words, the tangents at pointsK andM intersect at point
V , the tangents at pointsL andN intersect at pointW , the tangents at pointsK
andN intersect at pointX, and the tangents at pointsL andM intersect at point
Y (see Figure 11).
Then: Straight linePQ is a mid-perpendicular to segmentVW (point P is the
middle of segmentVW ) and PQ is also a mid-perpendicular to segmentXY

(pointQ is the middle of segmentXY ).

Figure 11.
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Proof. We denote byS the point of intersection of linesKL andMN . In the proof
of Theorem 1, we saw that pointsV , W , P , andS lie on the same straight line and
form a harmonic quadruple. From Section (a) of General Theorem B, itfollows
that in the case that circleω is coordinated with the Pascal points formed by it,
straight linesKL andMN are parallel to each other, and therefore their point of
intersection,S, is a point at infinity.
Hence it follows that:

(i) PointP is the middle of segmentVW (see, for example, [4, Section 199];
(ii) Straight lineVW is parallel to linesKL andMN (because lineVW also

passes through pointS);
(iii) QuadrilateralPMQN is a kite, and thereforePQ⊥MN (see Section (b)

in General Theorem B).

From these three properties, it follows that straight linePQ is a mid-perpendicular
to segmentVW , bisecting segmentVW at pointP .

We will now prove that linePQ is also a mid-perpendicular to segmentXY ,
bisectingXY at pointQ.
From Section (d) in General Theorem B, an inversion transformation with respect
to circleω transforms pointsP andQ one into the other. Therefore:

(i) PointsO, P , andQ lie on the same straight line (lineOP );
(ii) The polar of pointP with respect to circleω is the straight line that passes

through pointQ, and is perpendicular to lineOP .

Straight lineLM is the polar of pointY with respect to circleω, and pointP be-
longs toLM . Therefore, from the principal property of a pole and its polar (see
[1, Chapter 6, Paragraph 1]), the polar of pointP (with respect to circleω) passes
through pointY .
Similarly, because straight lineKN is the polar of pointX (with respect to circle
ω), and becauseP ∈ KN , it follows that the polar of pointP passes through point
X.
We thus obtained that the polar of pointP (with respect to circleω) passes through
the three points,Q, Y , andX, and also is perpendicular to straight lineOP . There-
fore, straight lineXY passes through pointQ and is parallel to straight lineVW

(becauseVW⊥OP andXY⊥OP ).
We denote byR the point of intersection of the tangents at pointsK andL (see
Figure 11). From Theorem 1, pointR belongs to the straight linePQ.
We consider triangleRXY , for which there holds:

(i) SegmentVW , whose endsV andW lie on two sides of the triangle, is
parallel to the third side,XY ;

(ii) Line RP bisects segmentVW (at pointP ).

Therefore, lineRP also bisects segmentXY (at pointQ).
In summary, straight lineRP (which is also linePQ) is a mid-perpendicular to
segmentXY . �

Theorem 4. Let ABCD be a quadrilateral in which the diagonals intersect at
pointE, and the continuations of sidesBC andAD intersect at pointF ;
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ω is a circle that passes through pointsE andF , and intersects sidesBC andAD
at pointsM andN , respectively, and intersects the continuations of diagonalsBD

andAC at pointsK andL, respectively;
R is the point of intersection of the tangents to circleω at pointsK andL;
P andQ are the Pascal points formed by circleω;
We denote:∡MPN = α, ∡MQN = β, ∡KRL = γ, ∡AFB = δ.
Then:

(a) When the center,O, of circle ω lies between chordsKL and MN (see
Figure 12), there holds:

(i) α+ β + γ = 180◦ and (ii) β + δ +
γ

2
= 90◦;

(b) When chordKL is the diameter ofω, there holds:
(i) α+ β = 180◦ and (ii) β + δ = 90◦;

(c) When chordsKL andMN lie on the same side relative to the centerO,
(see Figure 13b), there holds:

(i) α+ β − γ = 180◦ and (ii) β + δ −
γ

2
= 90◦;

(d) In each of the three cases listed above there holds:δ =
α− β

2
.

Figure 12.

Proof. In accordance with Theorem 2, in any circle that forms Pascal points and
passes through a pair of opposite sides, the angle between the tangents to the circle
at the points of intersection of the circle with the continuations of the diagonals (the
tangents at the pointsK andL in Figure 12) is a fixed value that does not depend
on the selection of the circle.
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From General Theorem A, any circle that forms Pascal pointsP andQ on sides
AB andCD and that intersects the two other sides at pointsM andN defines
a quadrilateral,PMQN , with fixed angles that do not depend on the choice of
circle.

Therefore, anglesα, β andγ do not depend on the choice of circleω. To prove
the theorem, we shall chooseω to be the circle coordinated with the Pascal points
formed by it.

(a)(i) The center,O, ofω lies between chordsKL andMN (see Figure 13a), there-
fore angle∡KNL (the inscribed angle resting on arĉKL) equals angle∡LKR

(the angle between tangentKR and chordKL). Angle∡LKR is the base angle

in the isosceles triangle△RKL. Therefore there holds:∡LKR = 90−
γ

2
, and

therefore also∡KNL = 90−
γ

2
.

Figure 13a. Figure 13b.

In addition,∡KNL is an exterior angle of triangle△PQN . The angles of this

triangle satisfy:∡NPQ =
α

2
and∡NQP =

β

2
(becausePMQN is a kite and

segmentPQ is its main diagonal). Therefore∡KNL =
α

2
+

β

2
. Hence it follows

that
α

2
+

β

2
= 90◦ −

γ

2
or α+ β + γ = 180◦.
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(ii) ∡KQL is an exterior angle of circleω (see Figure 13a), and therefore there
holds:

∡KQL =
1

2

(
K̂L− M̂N

)

=
1

2
K̂L−

1

2
M̂N

= ∡LNK − ∡MFN

= 90◦ −
γ

2
− δ.

It also follows thatβ = 90◦ −
γ

2
− δ or β + δ +

γ

2
= 90◦.

(b)(i) ChordKL is a diameter ofω, therefore the tangents to the circle at pointsK

andL are parallel to each other, and therefore angleγ between the tangents equals
0 (R is a point at infinity).∡KNL is an exterior angle that rests on the diameter,
and therefore, it equals90◦.

In addition, as we have seen in Section (a), we have∡KNL =
α

2
+

β

2
.

Therefore
α

2
+

β

2
= 90◦, orα+ β = 180◦.

(ii) For angle∡KQL = β there holds:

∡KQL =
1

2

(
K̂L− M̂N

)
=

1

2
· 180◦ −

1

2
M̂N = 90◦ − ∡MFN = 90◦ − δ,

and from here we haveβ + δ = 90◦.

(c)(i) ChordsKL andMN lie on the same side relative to centerO (as described
in Figure 13b). For angle∡KNL there holds:

∡KNL =
1

2
K̂FL =

1

2

(
360◦ − K̂EL

)
= 180◦ − ∡KLR.

Angle∡KLR is the angle between the tangent to the circle (at pointL) and chord
LK. In addition, it is also the base angle in isosceles triangle△KLR. Therefore

∡KLR = 90◦ −
γ

2
, and hence∡KNL = 90◦ +

γ

2
.

In Section (a) we proved that∡KNL =
α

2
+

β

2
, therefore

α

2
+

β

2
= 90◦ +

γ

2
or

α+ β − γ = 180◦.
(ii) For angle∡KQL = β there holds (see Figure 13b):

∡KQL =
1

2

(
K̂FL− M̂EN

)
= ∡KNL− ∡MNF.

Therefore, after substituting the appropriate expressions for the angles, we obtain

β = 90◦ +
γ

2
− δ, and henceβ + δ = 90◦ +

γ

2
.

(d) We show that the equality holds for each of the three locations of the center,O,
of circleω relative to chordsKL andMN .
If the center,O, of ω is between chordsKL andMN , there holds:

2β + 2δ = 180◦ − γ ⇒ 2β + 2δ = α+ β, and thereforeδ =
α− β

2
.
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If chordKL is a diameter ofω, there holdsβ + δ = 90◦ and also
α+ β

2
= 90◦,

thereforeβ + δ =
α+ β

2
⇒ δ =

α− β

2
.

If chordsKL andMN are on the same side relative to the center,O, there holds:

2β + 2δ = 180◦ + γ ⇒ 2β + 2δ = α+ β, and thereforeδ =
α− β

2
. �

Theorem 5. Let ABCD be a quadrilateral in which the diagonals intersect at
pointE, and the continuations of sidesBC andAD intersect at pointF ;
ω is a circle that passes through pointsE andF , and intersects sidesBC andAD
at pointsM andN , respectively, and intersects the continuations of diagonalsBD

andAC at pointsK andL, respectively;
In addition, circleω is coordinated with the Pascal pointsP andQ formed by it
(i.e., the center,O, of circleω belongs to linePQ);
I andJ are the points of intersection of straight linePQ and circleω;
R is the point of intersection of the tangents to circleω at pointsK andL (see
Figure 14).
Then:

(a) Point I is the center of the circle inscribed in kitePMQN , and pointJ is
the center of the circle that is tangent to the continuations of the sides of
kitePMQN .

(b) Point J is the center of the incircle of triangleRKL, and pointI is the
center of the excircle in triangleRKL which is tangent to sideKL.

Figure 14. Figure 15.
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Proof. (a) Given: circleω whose center,O, is collinear with the Pascal pointsP
andQ formed by it. Therefore, from Section (d) of General Theorem B, inversion
relative to circleω transforms pointsP andQ one into the other. Therefore, these
points together with the points of intersectionI andJ form a harmonic quadruple.
Since pointsI andJ divide segmentPQ harmonically (I – internal division,J –
external division), circleω is a circle of Apollonius of segmentPQ (see, for exam-
ple, [1, Chapter 5, paragraph 4]).
PointM belongs to the circle of Apolloniusω, and therefore, forM , it holds that
segmentMI bisects angle∡PMQ in trianglePMQ (see Figure 15).
QuadrilateralPMQN is a kite. The main diagonal of the kite (segmentPQ) bi-
sects the two angles∡MPN and∡MQN . It follows that pointI is the point of
intersection of three angle bisectors in quadrilateralPMQN . Therefore, pointI
is equidistant from all four sides of the quadrilateral. It thus follows that point I is
the center of the circle inscribed in quadrilateralPMQN .
We now consider segmentKJ . Since pointK belongs to the circle of Apollonius
ω (whose diameter isIJ , and∡IKJ = 90◦), it follows that segmentKJ bisects
the exterior angle of triangle△PKQ (the angle∡PKQ1).
Similarly, we prove thatLJ bisects angle∡PLQ2.
In addition, rayPJ bisects angle∡KPL (becausePQ bisects angle∡MPN ,
which is vertically opposite to angle∡KPL). It follows that pointJ is located at
equal distances from four rays:PK, PL, KQ1 andLQ2, which are the continua-
tions of the sides of kitePMQN (See Figure 15).
Therefore,J is the center of the circle tangent to the continuations of the sides of
the quadrilateralPMQN .

Figure 16.

(b) Let us prove that pointJ is the center of the incircle of triangleRKL. Point
J belongs to rayRO, which bisects angle∡KRL between the tangents to circleω
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that issue from pointR (See Figure 16).
In addition, pointJ is the middle of arĉKL (becauseRO is a mid-perpendicular
to chordKL of circleω).

Therefore,∡LKJ = ∡JKR (because∡LKJ =
1

2
K̂J and∡JKR =

1

2
ĴK), and

thereforeKJ bisects angle∡LKR.
It follows that pointJ is the point of intersection of the two angle bisectors in tri-
angle△RKL. Therefore, pointJ is the center of the incircle in this triangle.
Angle∡JKI is an inscribed angle resting on diameterIJ of the circleω, there-
fore ∡JKI = 90◦. In addition, angles∡LKR1 and ∡LKR are adjacent an-
gles. Hence, segmentKI bisects∡LKR1, where∡LKR1 is exterior to triangle
△LKR (see Figure 16).
Similarly, we prove that segmentLI bisects angle∡KLR2, which is also an exte-
rior angle to triangle△LKR.
We obtained that pointI is the point of intersection of two angle bisectors. These
angles are exterior angles in triangle△RKL, therefore pointI is located at equal
distances from segmentKL (side of triangle△RKL), and from raysKR1 and
LR2 (the continuations of the two other sides of the triangle).
Therefore,I is the center of the excircle of triangle△RKL. �

Theorem 6. The data of this Theorem is the same as the data of Theorem 5.
We also denote by:
Σ1 the circle inscribed in kitePMQN ,
Σ2 the circle tangent to the continuations of the sides of kitePMQN ,
Σ3 the incircle of triangleRKL,
Σ4 the excircle of triangleRKL (see Figure 17);
ri the radius of circleΣi (i ∈ {1, 2, 3, 4}), and
∡MPN = α, ∡MQN = β, ∡KRL = γ.
Then:

(a) The following relations hold for the radii of circlesΣi:
(i) r1 + r2 < r3 + r4;

(ii)
r1

r2
=

sin
α

2
− sin

β

2

sin
α

2
+ sin

β

2

.

(b) The following relations hold for the areas of circlesΣi:
(i) If α+ β < 180◦, thenSΣ1

+ SΣ2
< SΣ3

+ SΣ4
.

(ii) If α+ β = 180◦, thenSΣ1
+ SΣ2

= SΣ3
+ SΣ4

.
(iii) If α+ β > 180◦, thenSΣ1

+ SΣ2
> SΣ3

+ SΣ4
.
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Figure 17. Figure 18.

Proof. (a) We denote byH the point of tangency of circleΣ2 on sidePN of
kite PMQN (see Figure 18). ThereforeIH = r1. In right triangle△IPH there

holds:sin
α

2
=

IH

IP
, and thereforeIP =

r1

sin
α

2

.

We denote byG the point of tangency of circleΣ1 on sidePN of kite PMQN .

ThereforeJG = r2. In the right triangle△PJG there holds:sin∡GPJ =
JG

JP
,

and thereforeJP =
r2

sin
α

2

.

For segmentIJ we obtain:IJ = IP + PJ =
r1

sin
α

2

+
r2

sin
α

2

=
r1 + r2

sin
α

2

.

We denote byr the length of the radius of circleω, and therefore there holds:

OI = OJ = OL = r and alsoIJ = 2r, and hencer1 + r2 = 2r sin
α

2
.

Point Z is the point of tangency of circlesΣ3 andΣ4 on sideKL of triangle
△RKL (see Figure 18), and thereforeJZ = r3 andIZ = r4. Therefore, for seg-
mentIJ there also holds:IJ = JZ + IZ = r3 + r4, and hence:r3 + r4 = 2r.
It follows that the radii of the four circlesΣi satisfy the equality:

r1 + r2 = (r3 + r4) sin
α

2
.

Angle
α

2
is acute, thereforesin

α

2
< 1, and the following inequality holds:

r1 + r2 < r3 + r4.
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We express the angles of trianglePOL usingα andβ.

In △POL there holds:∡OPL =
α

2
, sideOL is the radius of circleω, and also

sideOL is perpendicular to the tangent to the circle at pointL. I In other words,
∡OLP = 90◦. Therefore, in the right triangle△RLO there holds:

∡ROL = 90◦ −
γ

2
, and hence:∡POL = 90◦ +

γ

2
.

We will now show that in all cases where chordKL is not a diameter (and therefore

pointR is not a point at infinity) there holds∡PLO =
β

2
.

If the center,O, is between chordsKL andMN , then angle∡ROL is an exterior
angle of triangle△POL, and angle∡ROL is not adjacent to angle∡PLO (see
Figure 18).

We use the formula
α

2
+

β

2
+

γ

2
= 90◦ from Section (a) of Theorem 4.

There holds:

∡PLO = ∡ROL− ∡OPL =
(
90◦ −

γ

2

)
−

α

2

= 90◦ −
(α
2
+

γ

2

)
=

β

2
.

If chordsKL andMN are located on the same side relative to the center,O, then
angle∡ROL is an exterior angle of triangle△POL (see Figure 19), and there

holds:∡ROL = 90◦ −
γ

2
.

We use the equality∡OPL =
α

2
and the formula

α

2
+

β

2
−

γ

2
= 90◦ from Section

(c) of Theorem 4 and obtain:

∡PLO = 180◦ −
α

2
−
(
90◦ −

γ

2

)
= 90◦ −

α

2
+

γ

2
=

β

2
.

From the Law of Sines in the triangle△POL it follows that:
OP

sin∡PLO
=

OL

sin∡LPO
and hence:

OP =
r · sin

β

2

sin
α

2

.

For segmentIP there holds:IP = IO −OP (see Figures 18 and 19).
We substitute the obtained expressions for the segments that appear in the last
equality, to obtain:

r1

sin
α

2

= r −
r · sin

β

2

sin
α

2

,

and hence:r1 = r

(
sin

α

2
− sin

β

2

)
.

For segmentPJ there holds:PJ = PO +OJ .
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We substitute the corresponding expressions in this equality, to obtain:

r2

sin
α

2

=
r · sin

β

2

sin
α

2

+ r,

and hence:r2 = r

(
sin

α

2
+ sin

β

2

)
.

Therefore for the ratio
r1

r2
, we obtain:

r1

r2
=

sin
α

2
− sin

β

2

sin
α

2
+ sin

β

2

.

Figure 19.

(b) We consider separately the sum of the areas of circlesΣ1 andΣ2, and the
sum of the areas of circlesΣ3 andΣ4:

SΣ1
+ SΣ2

= π
(
r21 + r22

)

= π

(
r2
(
sin

α

2
− sin

β

2

)2

+ r2
(
sin

α

2
+ sin

β

2

)2
)

= 2πr2
(
sin2

α

2
+ sin2

β

2

)
;
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SΣ3
+ SΣ4

= π
(
r23 + r24

)

= π
(
(r3 + r4)

2 − 2r3r4

)

= π
(
(2r)2 − 2r3r4

)
.

Let us express the product of radiir3r4 usingα, β andr.
For diameterIJ in circleω there holds:IJ = IZ + ZJ = r4 + r3.
SegmentZL is perpendicular to diameterIJ (at pointZ), and the other end of
segmentZL (pointL) belongs to circleω (see Figures 18 and 19). Therefore the
length of segmentZL is the geometric mean of the lengths of segmentsIZ and
ZJ , in other wordsIZ · ZJ = ZL2 or r3 · r4 = ZL2.

In right triangleOLZ there holds:sin∡LOZ =
ZL

OL
and hence:

ZL = r sin
(
90◦ −

γ

2

)
= r sin

(
α

2
+

β

2

)
.

Therefore, for the sum of circle areasΣ3 andΣ4 there holds:

SΣ3
+ SΣ4

= π
(
4r2 − 2r3r4

)

= π
(
4r2 − 2ZL2

)

= π

(
4r2 − 2r2 sin2

(
α

2
+

β

2

))
.

Let us consider the difference of the area sums:

(SΣ1
+ SΣ2

)− (SΣ3
+ SΣ4

)

= πr2
(
2 sin2

α

2
+ 2 sin2

β

2

)
− 2πr2

(
2− sin2

(
α

2
+

β

2

))

= πr2 (2− (cosα+ cosβ))− 2πr2
(
1 + cos2

(
α+ β

2

))

= πr2
(
2− 2 cos

α+ β

2
cos

α− β

2
− 2− 2 cos2

(
α+ β

2

))

= −2πr2 cos
α+ β

2

(
cos

α− β

2
+ cos

α+ β

2

)
.

In other words we have:

(SΣ1
+ SΣ2

)− (SΣ3
+ SΣ4

) = −2πr2 cos
α+ β

2

(
cos

α− β

2
+ cos

α+ β

2

)
.

Let us investigate the sign of expression

A = −2πr2 cos
α+ β

2

(
cos

α− β

2
+ cos

α+ β

2

)

as a function of the sum of anglesα+ β:

(i) If α+ β < 180◦, which is the case where the center,O, lies between chords

KL and MN , then angle
α+ β

2
is acute and thereforecos

α+ β

2
> 0, and
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(
cos

α− β

2
+ cos

α+ β

2

)
> 0. Therefore in this case, A< 0, which gives

SΣ1
+ SΣ2

< SΣ3
+ SΣ4

.
(ii) If α+ β = 180◦, which is the case where chordKL is a diameter of circle

ω, then angle
α+ β

2
equals90◦ and thereforecos

α+ β

2
= 0.

In this case, A= 0, andSΣ1
+ SΣ2

= SΣ3
+ SΣ4

.

(iii) If α+ β > 180◦, which is the case where chordsKL andMN are on

the same side relative to the center,O, then angle
α+ β

2
is obtuse and therefore

cos
α+ β

2
< 0.

Let us investigate the sign of B=

(
cos

α− β

2
+ cos

α+ β

2

)
.

There holds:cos
α− β

2
+ cos

α+ β

2
= 2 cos

α

2
cos

−β

2
= 2 cos

α

2
cos

β

2
.

Since angles
α

2
and

β

2
are acute, it holds thatcos

α

2
cos

β

2
> 0, and hence B> 0.

Therefore, in this case, A> 0, which givesSΣ1
+ SΣ2

> SΣ3
+ SΣ4

. �
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