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Pedals of the Poncelet Pencil and Fontené Points

Roger C. Alperin

Abstract. In this essay we describe special aspects of the Poncelet pencil, pedal
circles and their relation to theorems of Fontené.

1. Review of the Poncelet Pencil, [1], [2], [3]

Given triangle �ABC we consider the pencil of lines at the circumcenter O.
For each line L of this pencil we apply the isogonal transformation (denoted by ′)
to obtain the resulting conic K = L′ passing through H = O′, the orthocenter, and
thus K is an equilateral hyperbola. The pencil of conics K (as L varies) is called
the Poncelet pencil.

It is known that the locus of centers, Z(K), of these conics is the Euler nine
point circle C9. The circumcircle C meets each conic of the Poncelet pencil in the
three vertices of the triangle and the circumcircle point W (K). The midpoint of H
and W (K) is Z(K).

2. Pedal Circles of the Poncelet Pencil

For each point P of the plane not on the circumcircle C we can form the pedal
triangle and then its circumcircle C(P ). Points on C have pedals which lie on the
Simson line.

The history of the Theorem of Griffiths, sometimes known as Fontene’s second
theorem, is detailed in [7], §403 − 6, [9], [10] and asserts the following (see also
[4]).

Theorem 1. As P varies on L the pedal circles C(P ) pass through Z(K).

The identification of the common point is in Johnson [7], see also [2]. For the
points on C ∩ L the associated Simson lines also pass through Z(K) as indicated
in [7].

3. Pedal Circles of Isogonal Points

According to theorems proven in Honsberger, [5], p. 67, [6], p. 56, we know the
following (see Figure 1).

Theorem 2. For P and its isogonal P ′ the pedal triangles of � lie on C(P ) with
center o at the midpoint of PP ′.
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Figure 1. Pedal Circle from P

4. Fontene’s Third Theorem and McCay’s Cubic

Fontene’s Third Theorem characterizes when the pedal circle and nine point
circle, C9, are tangent: whenever P,O, P ′ are collinear.

Consider the intersections L ∩ K when K is irreducible. These two possible
points will be called the Fontené points K. A circle with these two Fontené points
as diameter will be called the Fontené circle. By construction Fontené pairs are an
isogonal pair.

Fontené’s third theorem [10] can be expressed as follows (see Figure 2).

Theorem 3. For P ∈ L the pedal circle C(P ) and C9 are tangent at Z(K) exactly
when P is a Fontené point of K.

The next result follows immediately from the definition of the McCay cubic as
the pivotal cubic determined from O and the isogonal transformation [8].

Theorem 4. As L varies at O the locus of the Fontené points is the McCay cubic.
The McCay cubic is self isogonal with isogonal pairs being the pairs of Fontené
points of an irreducible conic of the Poncelet pencil. The reducible conics of the
pencil give Fontené pairs consisting of a vertex and a point on the opposite side.

5. Examples

5.1. Isoceles Triangle. In trilinear coordinates u, v, w the equation of McCay’s
cubic is u(v2 − w2) cos(A) + v(w2 − u2) cos(B) + w(u2 − v2) cos(C) = 0. For
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Figure 2. Tangent Pedal Circle

an isosceles triangle A = B, u = v so the the equation factors up to a constant as
(u− v)(vu+ w2) = 0. Hence McCay’s cubic for an isosceles triangle consists of
the perpendicular bisector L of the base and a hyperbola. For this line L there are
infinitely many Fontené points on the reducible conic of the Poncelet pencil.

5.2. Jerabek. The Euler line L meets the Jerabek hyperbola K = L′ at O, H , its
Fontené points. The pedal triangles from these points are the midpoint triangle and
the orthic triangle. The pedal circle at these points is the Euler circle.

5.3. Fuerbach. L = OI is tangent to the Fuerbach hyperbola K = L′ at I; thus
there is only one Fontené point. The pedal circle from I is the incircle tangent to
the nine point circle at the Feuerbach point, the center of the Feuerbach hyperbola.

Similarly, for the other Feuerbach hyperbolas Ki = L′
i using Li = OIj for the

excenters Ij , j = 1, 2, 3 [1], we get the three ex-Feuerbach points on the nine point
circle as centers of these hyperbolas. The excenter is the Fontené point.

It now follows that the McCay cubic passes through the nine points A, B, C, O,
H , I , I1, I2, I3 and the vertices P,Q,R of the anti-cevian triangle of the circum-
center.

5.4. Kiepert, L = OG′ ,K = L′.

Theorem 5. For a non-isosceles triangle the Fontené points of the Kiepert hyper-
bola are complex.
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Figure 3. M’Cay Cubic

Proof. In trilinear coordinates u, v, w the McCay equation is u(v2−w2) cos(A)+
v(w2−u2) cos(B)+w(u2−v2) cos(C) = 0 and the Kiepert’s equation is sin(B−
C)/u + sin(C − A)/v + sin(A − B)/w = 0. Solving the Kiepert equation for
w we can then eliminate w from the McCay equation giving a cubic equation in
x = u/v. Since the orthocenter belongs to both curves we have a factor of x −
cos(B)/ cos(A) and thus this reduces to a quadratic equation in x. Rewriting C in
terms of A,B and simplifying gives the quadratic equation x2−2(cos(A) cos(B)+
sin(A) sin(B)x + 1 = 0. The discriminant is − sin(A − B)2 which is negative
unless A = B; thus the Fontené points are complex for a non-isosceles triangle.
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